Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 29(3): 68, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36792837

ABSTRACT

CONTEXT: Using chemical penetration enhancers to improve the penetration effect is one kind of important strategies in transdermal drug delivery system. Azone is a widely used transdermal absorption enhancer for transdermal drug delivery. To shed light on the permeation-promoting mechanism of azone, we selected ternary systems formed by azacyclopentane-2-one and N-methylolacetamide (1: 2) and explored the synergetic effect of hydrogen-bonding interactions among them and their thermodynamic properties. The findings indicate that the synergetic effects can enhance the ability of azone to change the original conformation of ceramides and even break the original hydrogen bonds, which is more beneficial for azone to destroy the 3D network structure of ceramides. When azone interacts with ceramide, the order of action tends to interact with one molecule of ceramide first and then with another molecule of ceramide. METHODS: The synergetic effects of hydrogen-bonding interactions in ternary systems were computed at the B3LYP/6-311 + + G** and MP2(full)/6-311 + + G** levels. Thermodynamic parameters for two ternary-complex routes were worked out at the B3LYP/aug-cc-pVDZ level. The shift of the electron density occurring simultaneously with trimer formation was analyzed at the MP2(full)/6-311 + + G** level. The above calculations were carried out using the Gaussian 03 program packages. Atoms in molecules (AIM) method and the AIMPAC program showed the topological charge density at the MP2(full)/6-311 + + G** level. The synergetic effects of hydrogen-bonding interactions and thermodynamic property in the 1: 2 (azacyclopentane-2-one: N-methylolacetamide) ternary systems were investigated using the B3LYP and MP2(full) methods.

2.
Mol Ther Nucleic Acids ; 23: 743-756, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33614226

ABSTRACT

The activation of the renin-angiotensin system (RAS) induced by increased angiotensin II (AngII) levels has been implicated in muscle atrophy, which is involved in the pathogenesis of congestive heart failure. Although peroxisome proliferator-activated receptor gamma (PPARγ) activation can suppress RAS, the exact role of PPARγ in AngII-induced muscle atrophy is unclear. Here we identified PPARγ as a negative regulator of miR-29b, a microRNA that is able to promote multiple types of muscle atrophy. Suppression of miR-29b could prevent AngII-induced muscle atrophy both in vitro and in vivo. IGF1, PI3K(p85α), and Yin Yang 1 (YY1) were identified as target genes of miR-29b, and overexpression of these targets could rescue AngII-induced muscle atrophy. Importantly, inhibition of PPARγ was sufficient to induce muscle atrophy, while PPARγ overexpression could attenuate that. These data indicate that the PPARγ/miR-29b axis mediates AngII-induced muscle atrophy, and increasing PPARγ or inhibiting miR-29b represents a promising approach to counteract AngII-induced muscle atrophy.

3.
Mol Ther ; 29(3): 1102-1119, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33279721

ABSTRACT

Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.


Subject(s)
MicroRNAs/genetics , Muscular Atrophy/therapy , RNA, Long Noncoding/antagonists & inhibitors , Regulatory Sequences, Nucleic Acid , SOXD Transcription Factors/metabolism , Animals , Cell Differentiation , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Myoblasts/metabolism , Myoblasts/pathology , RNA, Long Noncoding/genetics , SOXD Transcription Factors/genetics
4.
Mol Ther ; 28(5): 1359-1372, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32222157

ABSTRACT

Muscle atrophy is the loss of skeletal muscle mass and strength in response to diverse catabolic stimuli. At present, no effective treatments except exercise have been shown to reduce muscle atrophy clinically. Here, we report that CRISPR/Cas9-mediated genome editing through local injection into gastrocnemius muscles or tibialis anterior muscle efficiently targets the biogenesis processing sites in pre-miR-29b. In vivo, this CRISPR-based treatment prevented the muscle atrophy induced by angiotensin II (AngII), immobilization, and denervation via activation of the AKT-FOXO3A-mTOR signaling pathway and protected against AngII-induced myocyte apoptosis in mice, leading to significantly increased exercise capacity. Our work establishes CRISPR/Cas9-based gene targeting on miRNA as a potential durable therapy for the treatment of muscle atrophy and expands the strategies available interrogating miRNA function in vivo.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Genetic Therapy/methods , MicroRNAs/administration & dosage , MicroRNAs/genetics , Muscular Atrophy/therapy , Angiotensin II/adverse effects , Animals , CRISPR-Associated Protein 9/genetics , Dependovirus/genetics , Disease Models, Animal , HEK293 Cells , Humans , Immobilization/adverse effects , Injections, Intramuscular , Male , Mice , Mice, Inbred C57BL , Muscle Denervation/adverse effects , Muscular Atrophy/chemically induced , Muscular Atrophy/pathology , Myoblasts, Skeletal/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , Signal Transduction/genetics , Treatment Outcome
5.
J Mol Model ; 24(6): 139, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29855720

ABSTRACT

The structures of the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers have been fully optimized at B3LYP/6-311++G** level. The intermolecular hydrogen bonding interaction energies have been calculated using the B3LYP/6-311++G**, B3LYP/6-311++G(2df,2p), MP2(full)/6-311++G** and MP2(full)/6-311++G(2df,2p) methods, respectively. The results show that the O-H···O, N-H···O, O-H···N, and C-H···O hydrogen bonding interactions could exist in N-(hydroxymethyl)acetamide dimers, and the O-H···O, N-H···O, and O-H···N hydrogen bonding interactions could be stronger than C-H···O. The three-dimensional network structure formed by ceramide molecules through intermolecular hydrogen bonding interactions may be the main reason why the stratum corneum of skin could prevent foreign substances from entering our body, as is in accordance with the experimental results. The stability of hydrogen-bonding interactions follow the order of (a) > (b) ≈ (c) > (d) > (e) ≈ (f) > (g) > (h). The analyses of the energy decomposition, frequency, atoms in molecules (AIM), natural bond orbital (NBO), and electron density shift are used to further reveal the nature of the complex formation. In the range of 263.0-328.0 K, the complex is formed via an exothermic reaction, and the solvent with lower temperature and dielectric constant is favorable to this process. Graphical abstract The structures and the O-H···O=C, N-H···O=C and C-H···O=C H-bonding interactions in the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers were investigated using the B3LYP and MP2(full) methods.

6.
J Mol Model ; 19(12): 5171-85, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24114326

ABSTRACT

The cooperativity effects between the O/N-H∙∙∙F(-) anionic hydrogen-bonding and O/N-H∙∙∙O hydrogen-bonding interactions and electrostatic potentials in the 1:2 (F(-):N-(Hydroxymethyl)acetamide (signed as "ha")) ternary systems are investigated at the B3LYP/6-311++G** and MP2/6-311++G** levels. A comparison of the cooperativity effect in the "F(-)∙∙∙ha∙∙∙ha" and "FH∙∙∙ha(-)∙∙∙ha" systems is also carried out. The result shows that the increase of the H∙∙∙O interaction energy in the O-H∙∙∙O-H, N-H∙∙∙O-H or N-H∙∙∙O = C link is more notable than that in the O-H∙∙∙O = C contact upon ternary-system formation. The cooperativity effect is found in the complex formed by the O/N-H∙∙∙F(-) and O/N-H∙∙∙O interactions, while the anti-cooperativity effect is present in the system with only the O/N-H∙∙∙F(-) H-bond or the "FH∙∙∙ha(-)∙∙∙ha" complex by the N(-)∙∙∙H-F contact. Atoms in molecules (AIM) analysis and shift of electron density confirm the existence of cooperativity. The most negative surface electrostatic potential (V(S,min)) correlates well with the interaction energy E' int.(ha∙∙∙F-) and synergetic energy E(syn.), respectively. The relationship between the change of V(S,min) (i.e., ΔV(S,min)) and E(syn.) is also found.

SELECTION OF CITATIONS
SEARCH DETAIL
...