Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.354
Filter
1.
Bioact Mater ; 37: 517-532, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38698916

ABSTRACT

The cardiotoxicity caused by Dox chemotherapy represents a significant limitation to its clinical application and is a major cause of late death in patients undergoing chemotherapy. Currently, there are no effective treatments available. Our analysis of 295 clinical samples from 132 chemotherapy patients and 163 individuals undergoing physical examination revealed a strong positive correlation between intestinal barrier injury and the development of cardiotoxicity in chemotherapy patients. We developed a novel orally available and intestinal targeting protein nanodrug by assembling membrane protein Amuc_1100 (obtained from intestinal bacteria Akkermansia muciniphila), fluorinated polyetherimide, and hyaluronic acid. The protein nanodrug demonstrated favorable stability against hydrolysis compared with free Amuc_1100. The in vivo results demonstrated that the protein nanodrug can alleviate Dox-induced cardiac toxicity by improving gut microbiota, increasing the proportion of short-chain fatty acid-producing bacteria from the Lachnospiraceae family, and further enhancing the levels of butyrate and pentanoic acids, ultimately regulating the homeostasis repair of lymphocytes in the spleen and heart. Therefore, we believe that the integrity of the intestinal barrier plays an important role in the development of chemotherapy-induced cardiotoxicity. Protective interventions targeting the intestinal barrier may hold promise as a general clinical treatment regimen for reducing Dox-induced cardiotoxicity.

2.
Infect Drug Resist ; 17: 1599-1614, 2024.
Article in English | MEDLINE | ID: mdl-38699075

ABSTRACT

Introduction: As the last line of defense for clinical treatment, Carbapenem antibiotics are increasingly challenged by multi-drug resistant bacteria containing carbapenemases. The rapid spread of these multidrug-resistant bacteria is the greatest threat to severe global health problems. Methods: To solve the problem of rapid transmission of this multidrug-resistant bacteria, we have developed a rapid detection technology using CRPSPR-Cas12a gene editing based on multiple Recombinase polymerase amplification. This technical method can directly isolate the genes of carbapenemase-containing bacteria from samples, with a relatively short detection time of 30 minutes. The instrument used for the detection is relatively inexpensive. Only a water bath can complete the entire experiment of Recombinase polymerase amplification and trans cleavage. This reaction requires no lid during the entire process while reducing a large amount of aerosol pollution. Results: The detection sensitivity of this method is 1.5 CFU/mL, and the specificity is 100%. Discussion: This multi-scene detection method is suitable for screening populations in wild low-resource environments and large-scale indoor crowds. It can be widely used in hospital infection control and prevention and to provide theoretical insights for clinical diagnosis and treatment.

3.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701189

ABSTRACT

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Subject(s)
B-Lymphocytes , Cytokines , Encephalomyelitis, Autoimmune, Experimental , Inflammation , Multiple Sclerosis , Oxidative Phosphorylation , Animals , Multiple Sclerosis/immunology , Humans , Cytokines/immunology , Cytokines/metabolism , Mice , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Female , Male , Mice, Inbred C57BL , Adult , Adenosine Triphosphate/metabolism , Middle Aged
4.
Phys Rev Lett ; 132(16): 160201, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38701466

ABSTRACT

Quantum theory allows information to flow through a single device in a coherent superposition of two opposite directions, resulting into situations where the input-output direction is indefinite. Here we introduce a theoretical method to witness input-output indefiniteness in a single quantum device, and we experimentally demonstrate it by constructing a photonic setup that exhibits input-output indefiniteness with a statistical significance exceeding 69 standard deviations. Our results provide a way to characterize input-output indefiniteness as a resource for quantum information and photonic quantum technologies and enable tabletop simulations of hypothetical scenarios exhibiting quantum indefiniteness in the direction of time.

5.
J Clin Oncol ; : JCO2301636, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723227

ABSTRACT

PURPOSE: Open-label phase II study (RELATIVITY-060) to investigate the efficacy and safety of first-line nivolumab, a PD-1-blocking antibody, plus relatlimab, a lymphocyte-activation gene 3 (LAG-3)-blocking antibody, plus chemotherapy in patients with previously untreated advanced gastric cancer (GC) or gastroesophageal junction cancer (GEJC). METHODS: Patients with unresectable, locally advanced or metastatic GC/GEJC were randomly assigned 1:1 to nivolumab + relatlimab (fixed-dose combination) + chemotherapy or nivolumab + chemotherapy. The primary end point was objective response rate (ORR; per RECIST v1.1 by blinded independent central review [BICR]) in patients whose tumors had LAG-3 expression ≥1%. RESULTS: Of 274 patients, 138 were randomly assigned to nivolumab + relatlimab + chemotherapy and 136 to nivolumab + chemotherapy. Median follow-up was 11.9 months. In patients with LAG-3 expression ≥1%, BICR-assessed ORR (95% CI) was 48% (38 to 59) in the nivolumab + relatlimab + chemotherapy arm and 61% (51 to 71) in the nivolumab + chemotherapy arm; median progression-free survival (95% CI) by BICR was 7.0 months (5.8 to 8.4) versus 8.3 months (6.9 to 12.1; hazard ratio [HR], 1.41 [95% CI, 0.97 to 2.05]), and median overall survival (95% CI) was 13.5 months (11.9 to 19.1) versus 16.0 months (10.9 to not estimable; HR, 1.04 [95% CI, 0.70 to 1.54]), respectively. Grade 3 or 4 treatment-related adverse events (TRAEs) occurred in 69% and 61% of all treated patients, and 42% and 36% of patients discontinued because of any-grade TRAEs in the nivolumab + relatlimab + chemotherapy and nivolumab + chemotherapy arms, respectively. CONCLUSION: RELATIVITY-060 did not meet its primary end point of improved ORR in patients with LAG-3 expression ≥1% when relatlimab was added to nivolumab + chemotherapy compared with nivolumab + chemotherapy. Further studies are needed to address whether adding anti-LAG-3 to anti-PD-1 plus chemotherapy can benefit specific GC/GEJC patient subgroups.

6.
Adv Healthc Mater ; : e2400562, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773929

ABSTRACT

The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis and treatment, etc. It is noteworthy that soft and elastic conductive hydrogels (CHs), owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. In this review, we summarize the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discuss the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus towards bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications. This article is protected by copyright. All rights reserved.

7.
Carbohydr Polym ; 338: 122236, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763717

ABSTRACT

Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal ß-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-ß-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.


Subject(s)
Avicennia , Fermentation , Fruit , Gastrointestinal Microbiome , Pectins , Prebiotics , Pectins/chemistry , Fruit/chemistry , Avicennia/chemistry , Avicennia/microbiology , Humans , Gastrointestinal Microbiome/drug effects , Molecular Weight
9.
Pain Physician ; 27(4): E383-E394, 2024 May.
Article in English | MEDLINE | ID: mdl-38805534

ABSTRACT

BACKGROUND: Numerous meta-analyses and systematic reviews have explored the differences between percutaneous vertebroplasty (PVP) and percutaneous balloon kyphoplasty (PKP) for treating osteoporotic vertebral compression fractures (OVCFs), however, their final conclusions have been inconsistent. The inconsistent conclusions drawn from these meta-analyses create uncertainty among clinicians about the best treatment approach for OVCFs. OBJECTIVE: The aim of this study was to conduct a cross-sectional analysis of overlapping meta-analyses comparing PVP and PKP treatments for OVCF in order to help clinicians have access to the best available evidence and provide treatment recommendations based on the best available evidence. STUDY DESIGN: A cross-sectional analysis of overlapping meta-analyses. METHODS: We conducted a comprehensive search of meta-analyses published up to February 2023 in PubMed, Embase, Cochrane Library and Web of Science databases to identify relevant studies. The methodological quality of these studies was assessed using the Assessment of Multiple Systematic Reviews tool (original AMSTAR) and the Oxford Centre for Evidence-based Medicine Levels of Evidence. Two researchers independently extracted the data and assessed the quality of these meta-analyses. To determine which meta-analyses represented the best evidence, we employed the Jadad decision algorithm. RESULTS: Seventeen meta-analyses were included in the study, with AMSTAR scores ranging from 4 to 9, with an average of 7. After rigorous scrutiny, the Zhu et al study was determined to provide the best evidence. According to their findings, both PVP and PKP effectively alleviate pain and improve function in the treatment of OVCFs, without any statistically significant differences between them. In addition, PKP can reduce the risk of polymethylmethacrylate leakage compared to PVP. LIMITATIONS: This study analyzed published overlapping meta-analyses, inherently confining our investigation to the meta-analysis level. Furthermore, based on the AMSTAR scores, several included studies exhibited lower methodological quality. CONCLUSIONS: Currently, the best evidence indicates that PVP and PKP are equally effective at alleviating pain and enhancing function in the treatment of OVCFs, but PKP had a lower incidence of polymethylmethacrylate leakage. However, there is still a need for high-quality randomized controlled trials to provide higher levels of evidence regarding other aspects of the differences between the 2 procedures.


Subject(s)
Fractures, Compression , Kyphoplasty , Osteoporotic Fractures , Spinal Fractures , Vertebroplasty , Humans , Fractures, Compression/surgery , Kyphoplasty/methods , Vertebroplasty/methods , Osteoporotic Fractures/surgery , Spinal Fractures/surgery , Cross-Sectional Studies , Meta-Analysis as Topic
10.
Sci Rep ; 14(1): 12178, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806585

ABSTRACT

The resolution of traffic congestion and personal safety issues holds paramount importance for human's life. The ability of an autonomous driving system to navigate complex road conditions is crucial. Deep learning has greatly facilitated machine vision perception in autonomous driving. Aiming at the problem of small target detection in traditional YOLOv5s, this paper proposes an optimized target detection algorithm. The C3 module on the algorithm's backbone is upgraded to the CBAMC3 module, introducing a novel GELU activation function and EfficiCIoU loss function, which accelerate convergence on position loss lbox, confidence loss lobj, and classification loss lcls, enhance image learning capabilities and address the issue of inaccurate detection of small targets by improving the algorithm. Testing with a vehicle-mounted camera on a predefined route effectively identifies road vehicles and analyzes depth position information. The avoidance model, combined with Pure Pursuit and MPC control algorithms, exhibits more stable variations in vehicle speed, front-wheel steering angle, lateral acceleration, etc., compared to the non-optimized version. The robustness of the driving system's visual avoidance functionality is enhanced, further ameliorating congestion issues and ensuring personal safety.

11.
Cell Rep ; 43(5): 114238, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748875

ABSTRACT

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Subject(s)
Diet, High-Fat , ELAV-Like Protein 1 , Intestinal Absorption , Triglycerides , Triglycerides/metabolism , Triglycerides/biosynthesis , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Mice , Diet, High-Fat/adverse effects , Humans , Mice, Inbred C57BL , Male , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Obesity/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Fats/metabolism , Dietary Fats/pharmacology , Mice, Knockout , 3' Untranslated Regions/genetics , Acyltransferases
12.
J Med Chem ; 67(10): 8122-8140, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38712838

ABSTRACT

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Brain , Multiple Sclerosis , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Multiple Sclerosis/drug therapy , Humans , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Brain/metabolism , Mice , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Rats , Structure-Activity Relationship , Cell Proliferation/drug effects , Female
13.
Article in English | MEDLINE | ID: mdl-38761200

ABSTRACT

OBJECTIVE: To compare the clinical efficacy of the minimally invasive locking plate technique (Philos plate) and interlocking intramedullary nailing technique (TRIGEN intramedullary nail) in the treatment of Neer two-part and three-part proximal humeral fractures. METHODS AND MATERIALS: The clinical data of 60 patients with Neer two-part and three-part proximal humerus fractures admitted to the hospital from April 2017 to April 2021 were retrospectively analyzed. Thirty-two patients were treated with the minimally invasive locking plate technique (minimally invasive plate group), and 28 patients were treated with the interlocking intramedullary nailing technique (intramedullary nail group). The operation time, intraoperative blood loss, incision length, fracture healing time, and postoperative complications were compared between the two groups. The ASES score and Constant-Murley score were used to evaluate the shoulder joint function of the two groups one year after surgery. RESULTS: All 60 patients were followed up for 12 to 24 months, with an average of 16 months. There was no significant difference in operation time, intraoperative blood loss, incision length, or fracture healing time between the two groups (P > 0.05). The incidence of postoperative complications in the intramedullary nail group was significantly lower than that in the minimally invasive steel plate group, and the difference between the groups was statistically significant (P < 0.05). There was no significant difference in the ASES score or Constant-Murley score between the two groups one year after surgery (P > 0.05). CONCLUSION: The use of the minimally invasive locking plate technique and interlocking intramedullary nailing technique in the treatment of Neer two-part and three-part proximal humerus fractures has the advantages of a small incision, less blood loss, and a high fracture healing rate, and both can achieve satisfactory clinical effects. The internal nail technique is more convenient than the minimally invasive locking plate technique in controlling postoperative complications.

14.
iScience ; 27(6): 109923, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799558

ABSTRACT

Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.

15.
Mater Horiz ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629215

ABSTRACT

Magnetic propulsion of nano-/micro-robots is an effective way to treat implant-associated infections by physically destroying biofilm structures to enhance antibiotic killing. However, it is hard to precisely control the propulsion in vivo. Magnetic-nanoparticle coating that can be magnetically pulled off does not need precise control, but the requirement of adhesion stability on an implant surface restricts its magnetic responsiveness. Moreover, whether the coating has been fully pulled-off or not is hard to ensure in real-time in vivo. Herein, composited silk fibroins (SFMA) are optimized to stabilize Fe3O4 nanoparticles on a titanium surface in a dry environment; while in an aqueous environment, the binding force of SFMA on titanium is significantly reduced due to hydrophilic interaction, making the coating magnetically controllable by an externally-used magnet but still stable in the absence of a magnet. The maximum working distance of the magnet can be calculated using magnetomechanical simulation in which the yielding magnetic traction force is strong enough to pull Fe3O4 nanoparticles off the surface. The pulling-off removes the biofilms that formed on the coating and enhances antibiotic killing both in vitro and in a rat sub-cutaneous implant model by up to 100 fold. This work contributes to the practical knowledge of magnetic propulsion for biofilm treatment.

16.
J Org Chem ; 89(8): 5423-5433, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38557074

ABSTRACT

Currently, most conventional methods to achieve imidazo[1,5-a]pyridines have limitations for the synthesis of 3-acyl imidazo[1,5-a]pyridines. Herein, a novel and efficient Cu(I)-catalyzed three-component annulation method for the synthesis of valuable 3-acyl imidazo[1,5-a]pyridines by the reaction of 2-pyridinyl-substituted p-QMs, terminal alkynes, and TsN3 in the presence of O2 under mild conditions have successfully been developed. The investigation indicated that molecular oxygen (O2) and TsN3, respectively, serving as oxygen and nitrogen sources, were essential for the successful completion of the reaction system.

17.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637883

ABSTRACT

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Subject(s)
Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Panobinostat/pharmacology , Panobinostat/therapeutic use , NF-E2-Related Factor 2/genetics , Neuroendocrine Tumors/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Signal Transduction
18.
Front Immunol ; 15: 1374270, 2024.
Article in English | MEDLINE | ID: mdl-38650938

ABSTRACT

Pulmonary sarcomatoid carcinoma (PSC) represents a rare and highly aggressive variant of lung cancer, characterized by its recalcitrance to conventional therapeutic modalities and the attendant dismal prognosis it confers. Recent breakthroughs in immunotherapy have presented novel prospects for PSC patients; nevertheless, the utility of neoadjuvant/conversional immunotherapy in the context of PSC remains ambiguous. In this report, we present a middle-aged male presenting with Stage III PSC, notable for its high expression of the programmed death-ligand 1 (PD-L1), initially deemed as non-resectable for sizeable tumor mass and multiple lymph nodes metastases. The patient underwent a transformation to a resectable state after a regimen of three cycles of platinum-based chemotherapy plus immunotherapy. Following definitive surgical resection, the individual realized a pathological complete response (pCR), culminating in a significant prolongation of event-free survival (EFS). This case underscores the viability of employing immunochemotherapy as a neoadjuvant/conversional strategy for chosen cases of PSC.


Subject(s)
Lung Neoplasms , Humans , Male , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Middle Aged , Neoplasm Staging , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoadjuvant Therapy/methods , Immunotherapy/methods , Treatment Outcome , B7-H1 Antigen/antagonists & inhibitors , Carcinosarcoma/therapy , Carcinosarcoma/pathology , Carcinosarcoma/drug therapy
19.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 345-351, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38595256

ABSTRACT

OBJECTIVE: To analyze the influence of forming direction on the surface characteristics, elastic modulus, bending strength and fracture toughness of printed parts and the relationship between forming direction and force direction, and to provide scientific basis and guidance for the clinical application of oral denture base resin materials. METHODS: The 3D printing technology was used to print denture base resin samples. The shape and size of the samples referred to the current standard for testing conventional denture base materials. The samples used for physical performance testing were cylindrical (with a diameter of 15 mm and a thickness of 1 mm) and printed at different angles along the Z axis (0°, 45°, 90°). Scanning electron microscope was used to observe the microscopic topography of the different samples. The color stability of different samples was observed by color stabilizer. The surface roughness of the samples was analyzed by using surface roughness tester. The Vickers hardness was measured to analyze the hardness of the samples. The samples used for mechanical performance testing were rectangular (elastic modulus and bending strength: A length of 64 mm, a width of 10 mm, and a height of 3.3 mm; fracture toughness: A length of 39 mm, a width of 8 mm, and a height of 4 mm), divided into two groups: W group and H group. The W group was printed from the bottom up along the Z axis with the length × width as the bottom surface parallel to the X, Y axis plane, while the H group printed from the bottom up along the Z axis with the length × height as the bottom surface parallel to the X, Y axis plane. The forming angles of both groups were equally divided into 0°, 45°, and 90°. The elastic modulus, bending strength and fracture toughness of different samples were studied through universal mechanical testing machine. SPSS 22.0 software was used for statistical analysis. RESULTS: The microscopic topography and roughness of different samples were closely related to the printing direction, with significant differences between the 0°, 45°, and 90° specimens. The 0° specimens had the smoothest surface (roughness < 1 µm). The surface of the 45° specimen was the roughest (roughness>3 µm). The microhardness of the 0° sample was the best [(196.13±0.20) MPa], with a significant difference compared with the 90° sample [(186.62±4.81) MPa, P < 0.05]. The mechanical properties of different samples were also closely related to the printing direction. The elastic modulus, bending strength, and fracture toughness of the 45° samples in the W group were the highest compared with the other groups. The results of elastic modulus showed that in the H group, the 45° specimens had the highest elastic mo-dulus, which was significantly different from the 0° and 90° specimens (P < 0.05). The elastic modulus of 0° and 45° specimens in the W group were higher than those in 90° specimens (P < 0.05). The bending strength results showed that there was no significant difference between the specimens from dif-ferent angles in the H group. The bending strength of the 90° specimens in the W group was the smallest, and there was a significant difference between 90° and the 0° and 45° specimens (P < 0.05); And the bendind strength of the 0° and 45° specimens in the W group was significantly higher than that of the 0° and 45° specimens in the H group (P < 0.05). The fracture toughness results showed that the fracture toughness of the H group specimens was lower than 1.9 MPa m1/2, which was specified in the denture base standard. The 45° samples in the W group were the highest, with significant differences compared with the 0° and 90° samples (P < 0.05). And the 90° samples of the W group specimens were lower than 1.9 MPa m1/2. And the fracture toughness of the 45° specimen in the W group was significantly higher than that of all the specimens in the H group (P < 0.05). CONCLUSION: The 0° samples had relatively better physical properties. The 45° samples had the best mechanical properties. But the fracture toughness of specimens (H group and 90° samples of W group) did not yet meet clinical requirements. That indicated that the characteristics of the 3D printing denture base resin were affected by the printing direction. Only when the performance of the printed samples in all directions met the minimum requirements of the standard, they could be used in clinical practice.


Subject(s)
Printing, Three-Dimensional , Prosthodontics , Materials Testing , Surface Properties , Flexural Strength , Denture Bases
20.
Article in English | MEDLINE | ID: mdl-38558145

ABSTRACT

Previous studies about anhedonia symptoms in bipolar depression (BD) ignored the unique role of gender on brain function. This study aims to explore the regional brain neuroimaging features of BD with anhedonia and the sex differences in these patients. The resting-fMRI by applying fractional amplitude of low-frequency fluctuation (fALFF) method was estimated in 263 patients with BD (174 high anhedonia [HA], 89 low anhedonia [LA]) and 213 healthy controls. The effects of two different factors in patients with BD were analyzed using a 3 (group: HA, LA, HC) × 2 (sex: male, female) ANOVA. The fALFF values were higher in the HA group than in the LA group in the right medial cingulate gyrus and supplementary motor area. For the sex-by-group interaction, the fALFF values of the right hippocampus, left medial occipital gyrus, right insula, and bilateral medial cingulate gyrus were significantly higher in HA males than in LA males but not females. These results suggested that the pattern of high activation could be a marker of anhedonia symptoms in BD males, and the sex differences should be considered in future studies of BD with anhedonia symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...