Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 72: 39-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24566221

ABSTRACT

ß-Adrenergic receptor (ßAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. We hypothesized that acute ßAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis. C57BL/6 mice underwent acute i.p. injection with isoproterenol (ISO)±AG 1478 (EGFR antagonist) to assess the impact of ßAR-mediated EGFR transactivation on the phosphorylation of ERK1/2 (P-ERK1/2) and Akt (P-Akt) in distinct cardiac subcellular fractions. Increased P-ERK1/2 and P-Akt were observed in cytosolic, plasma membrane and nuclear fractions following ISO stimulation. Whereas the P-ERK1/2 response was EGFR-sensitive in all fractions, the P-Akt response was EGFR-sensitive only in the plasma membrane and nucleus, results confirmed in primary rat neonatal cardiomyocytes (RNCM). ßAR-mediated EGFR-transactivation also decreased apoptosis in serum-depleted RNCM, as measured via TUNEL as well as caspase 3 activity/cleavage, which were sensitive to the inhibition of either ERK1/2 (PD184352) or Akt (LY-294002) signaling. Caspase 3 activity/cleavage was also sensitive to the inhibition of transcription, which, with an increase in nuclear P-ERK1/2 and P-Akt in response to ISO, suggested that ßAR-mediated EGFR transactivation may regulate apoptotic gene transcription. An Apoptosis PCR Array identified tnfsf10 (TRAIL) to be altered by ISO in an EGFR-sensitive manner, results confirmed via RT-PCR and ELISA measurement of both membrane-bound and soluble cardiomyocyte TRAIL levels. ßAR-mediated EGFR transactivation induces differential subcellular activation of ERK1/2 and Akt leading to increased cell survival through the modulation of caspase 3 activity and apoptotic gene expression in cardiomyocytes.


Subject(s)
ErbB Receptors/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/genetics , Receptors, Adrenergic, beta/genetics , Adrenergic beta-Agonists/pharmacology , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/genetics , Caspase 3/genetics , Caspase 3/metabolism , Cats , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Gene Expression Regulation , Isoproterenol/pharmacology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Phosphorylation , Primary Cell Culture , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic, beta/metabolism , Signal Transduction , Tyrphostins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...