Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(25): e2308597, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664984

ABSTRACT

The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.


Subject(s)
Escherichia coli , Light , Metal-Organic Frameworks , Escherichia coli/metabolism , Escherichia coli/genetics , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/metabolism , Photosynthesis , Lysine/metabolism , Lysine/chemistry , Hydrogen/metabolism
3.
J Exp Clin Cancer Res ; 42(1): 219, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620897

ABSTRACT

BACKGROUND: The Makorin ring finger protein 1 (MKRN1) gene, also called RNF61, is located on the long arm of chromosome 7 and is a member of the RING finger protein family. The E3 ubiquitin ligase MKRN1 is closely linked to tumour development, but the exact mechanism needs to be elucidated. In this study, we aimed to investigate the specific mechanism and role of MKRN1 in colorectal cancer (CRC) development. METHODS: MKRN1 expression in CRC was analysed using the Cancer Cell Line Encyclopaedia and the Cancer Genome Atlas (TCGA) databases. Rectal tumour tissues were frozen to explore the MKRN1 expression in CRC and its clinical significance. The impact of MKRN1 on CRC cell proliferation and migration was observed using CCK8, colony formation, wound healing, and transwell assays. A combination of MKRN1 quantitative proteomics, ubiquitination modification omics analysis, and a string of in vitro and in vivo experiments revealed the potential mechanisms by which MKRN1 regulates CRC metastasis. RESULTS: MKRN1 expression was significantly elevated in CRC tissues compared to paracancerous tissues and was positively linked with prognosis (P < 0.01). MKRN1 downregulation inhibits CRC cell proliferation, migration, and invasion. Conversely, MKRN1 overexpression promotes the proliferation, migration, and invasion of CRC cells. Mechanistically, MKRN1 induces epithelial-mesenchymal transition (EMT) in CRC cells via ubiquitination and degradation of Smad nuclear-interacting protein 1 (SNIP1). Furthermore, SNIP1 inhibits transforming growth factor-ß (TGF-ß) signalling, and MKRN1 promotes TGF-ß signalling by degrading SNIP1 to induce EMT in CRC cells. Finally, using conditional knockout mice, intestinal lesions and metastatic liver microlesions were greatly reduced in the intestinal knockout MKRN1 group compared to that in the control group. CONCLUSIONS: High MKRN1 levels promote TGF-ß signalling through ubiquitination and degradation of SNIP1, thereby facilitating CRC metastasis, and supporting MKRN1 as a CRC pro-cancer factor. The MKRN1/SNIP1/TGF-ß axis may be a potential therapeutic target in CRC.


Subject(s)
Colorectal Neoplasms , RNA-Binding Proteins , Ribonucleoproteins , Animals , Mice , Cell Line , Cell Proliferation , Colorectal Neoplasms/genetics , Proteolysis , Humans , Ribonucleoproteins/metabolism , RNA-Binding Proteins/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction
4.
ACS Synth Biol ; 12(6): 1859-1867, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37224271

ABSTRACT

Galactose-inducible (GAL) promoters have been widely used in metabolic engineering in Saccharomyces cerevisiae for production of valuable products. Endogenous GAL promoters and GAL transcription factors have often been engineered to improve GAL promoter activities. Heterologous GAL promoters and GAL activator (Gal4p-like transcriptional activators), although existing in other yeasts or fungi, have not been well explored. In this study, we comprehensively characterized the activation effects of Gal4p activators from different yeasts or fungi on a variant of GAL promoters. Overexpressing endogenous Gal4p driven by PHHF1 increased the activities of native PGAL1 and heterologous PSkGAL2 by 131.20% and 72.45%, respectively. Furthermore, eight transcriptional activators from different organisms were characterized and most of them exhibited functions that were consistent with ScGal4p. Expression of KlLac9p from Kluyveromyces lactis further increased the activity of PScGAL1 and PSkGAL2 by 41.56% and 100.63%, respectively, compared to ScGal4p expression, and was able to evade Gal80p inhibition. This optimized GAL expression system can be used to increase the production of ß-carotene by 9.02-fold in S. cerevisiae. Our study demonstrated that a combination of heterologous transcriptional activators and GAL promoters provided novel insights into the optimization of the GAL expression system.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Galactose/metabolism , Gene Expression Regulation, Fungal/genetics
5.
Metab Eng ; 77: 273-282, 2023 05.
Article in English | MEDLINE | ID: mdl-37100192

ABSTRACT

Saccharomyces cerevisiae is a robust cell factory to secrete or surface-display cellulase and amylase for the conversion of agricultural residues into valuable chemicals. Engineering the secretory pathway is a well-known strategy for overproducing these enzymes. Although cell wall biosynthesis can be tightly linked to the secretory pathway by regulation of all involved processes, the effect of its modifications on protein production has not been extensively studied. In this study, we systematically studied the effect of engineering cell wall biosynthesis on the activity of cellulolytic enzyme ß-glucosidase (BGL1) by comparing seventy-nine gene knockout S. cerevisiae strains and newly identified that inactivation of DFG5, YPK1, FYV5, CCW12 and KRE1 obviously improved BGL1 secretion and surface-display. Combinatorial modifications of these genes, particularly double deletion of FVY5 and CCW12, along with the use of rich medium, increased the activity of secreted and surface-displayed BGL1 by 6.13-fold and 7.99-fold, respectively. Additionally, we applied this strategy to improve the activity of the cellulolytic cellobiohydrolase and amylolytic α-amylase. Through proteomic analysis coupled with reverse engineering, we found that in addition to the secretory pathway, regulation of translation processes may also involve in improving enzyme activity by engineering cell wall biosynthesis. Our work provides new insight into the construction of a yeast cell factory for efficient production of polysaccharide degrading enzymes.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Proteomics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , beta-Glucosidase/genetics , Polysaccharides , Cell Wall/genetics , Cell Wall/metabolism
6.
Microorganisms ; 10(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36296281

ABSTRACT

Saccharomyces cerevisiae has been widely used as a microbial cell factory to produce recombinant proteins. Therefore, enhancing the protein production efficiency of yeast cell factories to expand the market demand for protein products is necessary. Recombinant proteins are often retained in the secretory pathway because of the limited protein transport performed by vesicle trafficking. Cell polarization describes the asymmetric organization of the plasma membrane cytoskeleton and organelles and tightly regulates vesicle trafficking for protein transport. Engineering vesicle trafficking has broadly been studied by the overexpression or deletion of key genes involved but not by modifying cell polarization. Here, we used α-amylase as a reporter protein, and its secretion and surface-display were first improved by promoter optimization. To study the effect of engineering cell polarization on protein production, fourteen genes related to cell polarization were overexpressed. BUD1, CDC42, AXL1, and BUD10 overexpression increased the activity of surface-displayed α-amylase, and BUD1, BUD3, BUD4, BUD7, and BUD10 overexpression enhanced secreted α-amylase activity. Furthermore, BUD1 overexpression increased the surface-displayed and secreted α-amylase expression by 56% and 49%, respectively. We also observed that the combinatorial modification and regulation of gene expression improved α-amylase production in a dose-dependent manner. BUD1 and CDC42 co-overexpression increased the α-amylase surface display by 100%, and two genomic copies of BUD1 improved α-amylase secretion by 92%. Furthermore, these modifications were used to improve the surface display and secretion of the recombinant ß-glucosidase protein. Our study affords a novel insight for improving the surface display and secretion of recombinant proteins.

7.
Angew Chem Int Ed Engl ; 61(30): e202205570, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35644909

ABSTRACT

Structurally diverse acylations have been identified as post-translational modifications (PTMs) on histone lysine residues, but their functions and regulations remain largely unknown. Interestingly, in nature, a lysine acylation analog, pyrrolysine, is introduced as a co-translational modification (CTM) through genetic encoding. To explore this alternative life form, we created a model organism Saccharomyces cerevisiae containing site-specific lysine CTMs (acetyl-lysine, crotonyl-lysine, or another synthetic analog) at histone H3K56 using non-canonical amino acid mutagenesis to afford a chemically modified nucleosome in lieu of their own in vivo. We further demonstrated that acetylation of histone H3K56 partly tends to provide a more favorable chromatin environment for DNA repair in yeast compared to crotonylation and crosstalk with other PTMs differently. This study provides a potentially universal approach to decipher the consequences of different histone lysine PTMs in eukaryotes.


Subject(s)
Histones , Nucleosomes , Acetylation , Histones/chemistry , Lysine/chemistry , Nucleosomes/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(3): 237-243, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-35365989

ABSTRACT

Objective To investigate the possible mechanism of doxorubicin hydrochloride (DOX) inhibiting the proliferation of HT29 and HCT15 colon cancer cells. Methods The gradient concentrations of (0, 0.08, 0.16, 0.32, 0.64, 1.28) µmol/L DOX were used to treat HT29 and HCT15 cells for 24, 48 and 72 hours, and the cell proliferation activity was detected by CCK-8 assay to determine the optimal DOX concentration and treatment time. According to different treatments, HT29 and HCT15 cells were divided into 2 groups: control group (only DMSO treatment) and (0.16, 0.32, 0.64, 1.28) µmol/L DOX group. Western blot was used to detect the effect of inhibiting autophagy on apoptosis, with 3-methyladenine (3-MA) group and 3-MA combined with DOX group supplemented. The colony formation of colon cancer cells was detected by colony formation assay, and the expression of cell B-cell lymphoma 2 (Bcl2), Bcl2-associated X protein (BAX), beclin 1, and LC3 protein were detected by Western blot. Results DOX inhibited the proliferation and colony formation of colon cancer cells, and promoted cell apoptosis in a concentration-dependent manner; DOX promoted autophagy in cells, and the expression of beclin 1 and LC3 II increased in a concentration-dependent manner; DOX promoted apoptosis of colon cancer cells, which was improved by inhibiting autophagy. Conclusion DOX inhibits the proliferation of colon cancer cells and promotes their apoptosis, and inhibition of autophagy in colon cancer cells can increase the sensitivity of apoptosis induced by DOX.


Subject(s)
Colonic Neoplasms , Doxorubicin , Apoptosis , Autophagy , Cell Line, Tumor , Doxorubicin/pharmacology , Humans
9.
J Mol Biol ; 434(8): 167382, 2022 04 30.
Article in English | MEDLINE | ID: mdl-34863778

ABSTRACT

Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.


Subject(s)
Amino Acids , Genetic Code , Mutagenesis, Site-Directed , Protein Biosynthesis , Amino Acids/genetics , Mutagenesis, Site-Directed/methods , Protein Biosynthesis/genetics , Synthetic Biology
10.
Microb Cell Fact ; 20(1): 202, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34663323

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae is an important synthetic biology chassis for microbial production of valuable molecules. Promoter engineering has been frequently applied to generate more synthetic promoters with a variety of defined characteristics in order to achieve a well-regulated genetic network for high production efficiency. Galactose-inducible (GAL) expression systems, composed of GAL promoters and multiple GAL regulators, have been widely used for protein overexpression and pathway construction in S. cerevisiae. However, the function of each element in synthetic promoters and how they interact with GAL regulators are not well known. RESULTS: Here, a library of synthetic GAL promoters demonstrate that upstream activating sequences (UASs) and core promoters have a synergistic relationship that determines the performance of each promoter under different carbon sources. We found that the strengths of synthetic GAL promoters could be fine-tuned by manipulating the sequence, number, and substitution of UASs. Core promoter replacement generated synthetic promoters with a twofold strength improvement compared with the GAL1 promoter under multiple different carbon sources in a strain with GAL1 and GAL80 engineering. These results represent an expansion of the classic GAL expression system with an increased dynamic range and a good tolerance of different carbon sources. CONCLUSIONS: In this study, the effect of each element on synthetic GAL promoters has been evaluated and a series of well-controlled synthetic promoters are constructed. By studying the interaction of synthetic promoters and GAL regulators, synthetic promoters with an increased dynamic range under different carbon sources are created.


Subject(s)
Carbon/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Gene Expression Regulation, Fungal , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
11.
Front Cell Dev Biol ; 8: 563316, 2020.
Article in English | MEDLINE | ID: mdl-33102474

ABSTRACT

Octamer-binding transcription factor 4 (Oct4) has been recently implicated as a proangiogenic regulator in several induced pluripotent stem cells (iPSCs), however, its role in cancer stem-like cells (CSCs) remain unclear. We report here that Oct4 participates in tumor vasculogenesis in liver CSCs (LCSCs). We identify that LCSCs possess the potential of endothelial trans-differentiation under endothelial induction, present endothelial specific markers and their functions in vitro, and participate in neovasculogenesis in vivo. The knockdown of the Oct4A by short hairpin RNA (shRNA) in LCSCs represses endothelial trans-differentiation potential, but induces endothelial lineage-restricted differentiation, the latter is positively regulated by Oct4B1. Furthermore, Oct4 regulates vasculogenesis in LCSCs may be via the AKT-NF-κB-p65 signaling pathway. This work reveals Oct4, which is a crucial regulator, plays a critical role in tumor endothelial-like cells transition of LCSCs through Oct4A and Oct4B1 by different ways. The simultaneous inhibition of both the isoforms of Oct4 is hence expected to help regress neovascularization derived from CSCs. Our findings may provide insights to the possible new mechanisms of tumor vasculogenesis for primary liver cancer.

12.
Front Bioeng Biotechnol ; 8: 569191, 2020.
Article in English | MEDLINE | ID: mdl-33042970

ABSTRACT

With the advances in the field of expanded genetic code, the application of non-canonical amino acid (ncAA) is considered an effective strategy for protein engineering. However, cumbersome and complicated selection schemes limit the extensive application of this technology in Saccharomyces cerevisiae. To address this issue, a simplified selection scheme with confident results was developed and tested in this study. Based on a mutation library derived from Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS), a logic gate in synthetic biology was used to optimize screening procedures. We found that an "and" gate was more suitable than an "or" gate for isolating aminoacyl-tRNA synthetase from S. cerevisiae. The successful incorporation of O-methyltyrosine (OMeY) proved the utility and efficiency of this new selection scheme. After a round of positive selection, several new OMeY-tRNA synthetase (OMeYRS) mutants were screened, and their incorporation efficiency was improved. Furthermore, we characterized the insertion of several tyrosine analogs into Herceptine Fab and discovered that OMeYRS and its mutants were polyspecific. One of these mutants showed an optimal performance to incorporate different ncAAs into recombinant proteins in S. cerevisiae; this mutant was cloned and transfected into mammalian cells, and the results proved its functionality in HEK293 cells. This study could expand the application of ncAA in S. cerevisiae to construct efficient yeast cell factories for producing natural and synthetic products.

13.
Metabolites ; 10(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781665

ABSTRACT

Promoters play an essential role in the regulation of gene expression for fine-tuning genetic circuits and metabolic pathways in Saccharomyces cerevisiae (S. cerevisiae). However, native promoters in S. cerevisiae have several limitations which hinder their applications in metabolic engineering. These limitations include an inadequate number of well-characterized promoters, poor dynamic range, and insufficient orthogonality to endogenous regulations. Therefore, it is necessary to perform promoter engineering to create synthetic promoters with better properties. Here, we review recent advances related to promoter architecture, promoter engineering and synthetic promoter applications in S. cerevisiae. We also provide a perspective of future directions in this field with an emphasis on the recent advances of machine learning based promoter designs.

14.
Biochemistry ; 59(1): 90-99, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31703481

ABSTRACT

The Escherichia coli-derived tyrosyl-tRNA synthetase was the first enzyme engineered for genetic code expansion in a eukaryotic system but can charge only a limited set of structurally simple noncanonical amino acids. In contrast, the thermophilic Methanocaldococcus jannaschii-derived tyrosyl-tRNA synthetase mutants, used in only a prokaryotic system, can charge a surprisingly large set of structurally diverse ncAAs, due to their remarkable structural ability to tolerate mutations. Inspired by this, we characterized a new class of tyrosyl-tRNA synthetase/tRNATyr pairs from thermophilic bacterium Geobacillus stearothermophilus, which is homologous to the E. coli tyrosyl-tRNA synthetase but with better thermostability. This new pair is both orthogonal in mammalian cells and in Saccharomyces cerevisiae for genetic code expansion and can charge a diverse set of ncAAs with a comparable cellular efficiency, better specificity, and lower background, as compared to those of its E. coli homologue. This thermostable enzyme provides an alternative scaffold for synthetase library screening or evolution to genetically encode more structurally complex ncAAs in eukaryotic cells.


Subject(s)
Bacterial Proteins/genetics , Genetic Code , Geobacillus stearothermophilus/enzymology , RNA, Transfer/genetics , Tyrosine-tRNA Ligase/genetics , Bacterial Proteins/chemistry , Catalytic Domain/genetics , Escherichia coli/enzymology , Humans , Mutation , Protein Stability , Saccharomyces cerevisiae/genetics , Substrate Specificity , Transition Temperature , Tyrosine-tRNA Ligase/chemistry
15.
Microb Cell Fact ; 18(1): 85, 2019 May 18.
Article in English | MEDLINE | ID: mdl-31103030

ABSTRACT

BACKGROUND: Cell surface display of recombinant proteins has become a powerful tool for biotechnology and biomedical applications. As a model eukaryotic microorganism, Saccharomyces cerevisiae is an ideal candidate for surface display of heterologous proteins. However, the frequently used commercial yeast surface display system, the a-agglutinin anchor system, often results in low display efficiency. RESULTS: We initially reconstructed the a-agglutinin system by replacing two anchor proteins with one anchor protein. By directly fusing the target protein to the N-terminus of Aga1p and inserting a flexible linker, the display efficiency almost doubled, and the activity of reporter protein α-galactosidase increased by 39%. We also developed new surface display systems. Six glycosylphosphatidylinositol (GPI) anchored cell wall proteins were selected to construct the display systems. Among them, Dan4p and Sed1p showed higher display efficiency than the a-agglutinin anchor system. Linkers were also inserted to eliminate the effects of GPI fusion on the activity of the target protein. We further used the newly developed Aga1p, Dan4p systems and Sed1p system to display exoglucanase and a relatively large protein ß-glucosidase, and found that Aga1p and Dan4p were more suitable for immobilizing large proteins. CONCLUSION: Our study developed novel efficient yeast surface display systems, that will be attractive tools for biotechnological and biomedical applications.


Subject(s)
Cell Surface Display Techniques , Cell Wall/metabolism , Membrane Glycoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Adhesion Molecules/metabolism , Glycosylphosphatidylinositols/metabolism , Recombinant Fusion Proteins/metabolism
16.
J Am Chem Soc ; 140(41): 13253-13259, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30247891

ABSTRACT

Protein tyrosine phosphatases (PTPs) play critical roles in cell signaling pathways, but identification of unknown PTPs for a given substrate in live cells remain technically challenging. Here, we synthesized a series of tyrosine-based irreversible PTP inhibitors and characterized by site-specific encoding on substrate proteins in cells with an expanded genetic code. By fine-tuning the chemical reactivity, we identified optimal active amino acid probes to covalently cross-link a PTP and its substrate both in vitro and in mammalian cells. Using HER2 as an example, we provide first direct evidence of HER2 Y1023 and SHP2 cross-linking in situ in living human cells. Moreover, proteomic analysis using our approach identified PTP1B as a novel phosphatase for HER2 that specifically dephosphorylated pY1221 position, which may shed light on the puzzle of PTP1B's role in HER2 positive breast cancer. This novel method provides a useful tool for dissecting tyrosine phosphoregulation in living cells.


Subject(s)
Cross-Linking Reagents/chemistry , Enzyme Inhibitors/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/analysis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Tyrosine/genetics , Cross-Linking Reagents/chemical synthesis , Cysteine/chemistry , Enzyme Inhibitors/chemical synthesis , HEK293 Cells , Humans , Phosphorylation/physiology , Proof of Concept Study , Protein Engineering/methods , Protein Tyrosine Phosphatase, Non-Receptor Type 1/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proteomics/methods , Receptor, ErbB-2/chemistry , Tyrosine/analogs & derivatives , Tyrosine/chemical synthesis
17.
Microb Cell Fact ; 17(1): 122, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-30086751

ABSTRACT

BACKGROUND: The self-assembly of cellulosomes on the surface of yeast is a promising strategy for consolidated bioprocessing to convert cellulose into ethanol in one step. RESULTS: In this study, we developed a novel synthetic cellulosome that anchors to the endogenous yeast cell wall protein a-agglutinin through disulfide bonds. A synthetic scaffoldin ScafAGA3 was constructed using the repeated N-terminus of Aga1p and displayed on the yeast cell surface. Secreted cellulases were then fused with Aga2p to assemble the cellulosome. The display efficiency of the synthetic scaffoldin and the assembly efficiency of each enzyme were much higher than those of the most frequently constructed cellulosome using scaffoldin ScafCipA3 from Clostridium thermocellum. A complex cellulosome with two scaffoldins was also constructed using interactions between the displayed anchoring scaffoldin ScafAGA3 and scaffoldin I ScafCipA3 through disulfide bonds, and the assembly of secreted cellulases to ScafCipA3. The newly designed cellulosomes enabled yeast to directly ferment cellulose into ethanol. CONCLUSIONS: This is the first report on the development of complex multiple-component assembly system through disulfide bonds. This strategy could facilitate the construction of yeast cell factories to express synergistic enzymes for use in biotechnology.


Subject(s)
Cellulosomes/metabolism , Cellulases/metabolism , Cellulose/metabolism , Clostridium thermocellum/drug effects , Clostridium thermocellum/metabolism , Ethanol/pharmacology
18.
Biotechnol Biofuels ; 10: 53, 2017.
Article in English | MEDLINE | ID: mdl-28261326

ABSTRACT

BACKGROUND: Cellulase expression via extracellular secretion or surface display in Saccharomyces cerevisiae is one of the most frequently used strategies for a consolidated bioprocess (CBP) of cellulosic ethanol production. However, the inefficiency of the yeast secretory pathway often results in low production of heterologous proteins, which largely limits cellulase secretion or display. RESULTS: In this study, the components of the vesicle trafficking from the endoplasmic reticulum (ER) to the Golgi and from the Golgi to the plasma membrane, involved in vesicle budding, tethering and fusion, were over-expressed in Clostridium thermocellum endoglucanase (CelA)- and Sacchromycopsis fibuligera ß-glucosidase (BGL1)-secreting or -displaying strains. Engineering the targeted components in the ER to Golgi vesicle trafficking, including Sec12p, Sec13p, Erv25p and Bos1p, enhanced the extracellular activity of CelA. However, only Sec13p over-expression increased BGL1 secretion. By contrast, over-expression of the components in the Golgi to plasma membrane vesicle trafficking, including Sso1p, Snc2p, Sec1p, Exo70p, Ypt32p and Sec4p, showed better performance in increasing BGL1 secretion compared to CelA secretion, and the over-expression of these components all increased BGL1 extracellular activity. These results revealed that various cellulases showed different limitations in protein transport, and engineering vesicle trafficking has protein-specific effects. Importantly, we found that engineering the above vesicle trafficking components, particularly from the ER to the Golgi, also improved the display efficiency of CelA and BGL1 when a-agglutinin was used as surface display system. Further analyses illustrated that the display efficiency of a-agglutinin was increased by engineering vesicle trafficking, and the trend was consistent with displayed CelA and BGL1. These results indicated that fusion with a-agglutinin may affect the proteins' properties and alter the rate-limiting step in the vesicle trafficking. CONCLUSIONS: We have demonstrated, for the first time, engineering vesicle trafficking from the ER to the Golgi and from the Golgi to the plasma membrane can enhance the protein display efficiency. We also found that different heterologous proteins had specific limitations in vesicle trafficking pathway and that engineering the vesicle trafficking resulted in a protein-specific effect. These results provide a new strategy to improve the extracellular secretion and surface display of cellulases in S. cerevisiae.

19.
Sci Rep ; 6: 25654, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27156860

ABSTRACT

Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three heterologous proteins, ß-glucosidase, endoglucanase and cellobiohydrolase, was found to be N-hyperglycosylated in S. cerevisiae. To block the formation of hypermannose glycan, these proteins were expressed in strains with deletions in key Golgi mannosyltransferases (Och1p, Mnn9p and Mnn1p), respectively. Their extracellular activities improved markedly in the OCH1 and MNN9 deletion strains. Interestingly, truncation of the N-hypermannose glycan did not increase the specific activity of these proteins, but improved the secretion yield. Further analysis showed OCH1 and MNN9 deletion up-regulated genes in the secretory pathway, such as protein folding and vesicular trafficking, but did not induce the unfolded protein response. The cell wall integrity was also affected by OCH1 and MNN9 deletion, which contributed to the release of secretory protein extracellularly. This study demonstrated that mannosyltransferases disruption improved protein secretion through up-regulating secretory pathway and affecting cell wall integrity and provided new insights into glycosylation engineering for protein secretion.


Subject(s)
Cell Wall/metabolism , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Secretory Pathway , Extracellular Space/metabolism , Gene Deletion , Glycosylation , Mannosyltransferases/genetics , Molecular Weight , Porosity , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Unfolded Protein Response , beta-Fructofuranosidase/metabolism
20.
Biotechnol Bioeng ; 112(9): 1872-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25850421

ABSTRACT

Saccharomyces cerevisiae is widely used as a producer of heterologous proteins of medical and industrial interest. Numerous efforts have been made to overcome bottlenecks in protein expression and secretion. However, the effect of engineering protein translocation to heterologous protein secretion has not been studied extensively in S. cerevisiae. In this work, we confirmed that heterologous protein expression in S. cerevisiae induced the unfolded protein response (UPR). To enhance protein folding capacity, the endoplasmic reticulum (ER) chaperone protein BiP and the disulfide isomerase Pdi1p were each over-expressed, and the secretion of three heterologous proteins, ß-glucosidase, endoglucanase, and α-amylase, was improved. The impact of engineering key translocation components was also studied. The over-expression of co-translational translocation components Srp14p and Srp54p enhanced the secretion of three heterologous proteins (ß-glucosidase, endoglucanase, and α-amylase), but over-expressing the cytosolic chaperone Ssa1p (involved in post-translational translocation) only enhanced the secretion of ß-glucosidase. By engineering both co-translational translocation and protein folding, we obtained strains with ß-glucosidase, endoglucanase, and α-amylase activities increased by 72%, 60%, and 103% compared to the controls. Our results show that protein translocation may be a limiting factor for heterologous protein production.


Subject(s)
Protein Engineering/methods , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...