Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 977: 176666, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38797313

ABSTRACT

Osteoporosis is a highly prevalent bone metabolic disease in menopause due to estrogen deficiency. Hyperoside is a main compound in Semen cuscutae. Our team previously reported that Semen cuscutae has anti osteoporosis effect on ovariectomized mice by inhibiting bone resorption of osteoclasts. However, it is still unclear whether hyperoside affects osteoclast differentiation and bone resorption, and whether its anti-osteoporosis effect is related to an estrogen-like effect. This study investigates the potential mechanism of hyperoside's anti-osteoporotic effect by examining its impact on osteoclast differentiation and its relationship with the estrogen receptor. DXA, Micro-CT, TRAP staining, HE, and ELISA were used to assess the impact of hyperoside on OVX-induced osteoporosis. The effect of hyperoside on octeoclast differentiation was evaluated using TRAP activity assay, TRAP staining, F-actin staining. The activation of the estrogen receptor by hyperoside and its relationship with osteoclast differentiation were detected using dual-luciferase reporter assay and estrogen receptor antagonists. Our findings revealed that hyperoside (20-80 mg/kg) protect against OVX-induced osteoporosis, including increasing BMD and BMC and improving bone microstructure. Hyperoside inhibited osteoclast differentiation in a concentration dependent manner, whereas estrogen receptor α antagonists reversed its inhibitory effect osteoclast differentiation. Western blot results suggested that hyperoside inhibited TRAP, RANKL, c-Fos and ITG ß3 protein expression in osteoclast or femoral bone marrow of ovariectomized mice. Our findings suggest that hyperoside inhibits osteoclast differentiation and protects OVX-induced osteoporosis through the ERα/ITGß3 signaling pathway.


Subject(s)
Cell Differentiation , Estrogen Receptor alpha , Osteoclasts , Osteoporosis , Ovariectomy , Quercetin , Signal Transduction , Animals , Ovariectomy/adverse effects , Female , Signal Transduction/drug effects , Mice , Estrogen Receptor alpha/metabolism , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/therapeutic use , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Cell Differentiation/drug effects , Mice, Inbred C57BL , Bone Density/drug effects , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone Resorption/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...