Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(45): 18378-83, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23100533

ABSTRACT

Many toxins assemble into oligomers on the surface of cells. Local chemical cues signal and trigger critical rearrangements of the oligomer, inducing the formation of a membrane-fused or channel state. Bacillus anthracis secretes two virulence factors: a tripartite toxin and a poly-γ-d-glutamic acid capsule (γ-DPGA). The toxin's channel-forming component, protective antigen (PA), oligomerizes to create a prechannel that forms toxic complexes upon binding the two other enzyme components, lethal factor (LF) and edema factor (EF). Following endocytosis into host cells, acidic pH signals the prechannel to form the channel state, which translocates LF and EF into the host cytosol. We report γ-DPGA binds to PA, LF, and EF, exhibiting nanomolar avidity for the PA prechannel oligomer. We show PA channel formation requires the pH-dependent disruption of the intra-PA domain-2-domain-4 (D2-D4) interface. γ-DPGA stabilizes the D2-D4 interface, preventing channel formation both in model membranes and cultured mammalian cells. A 1.9-Šresolution X-ray crystal structure of a D2-D4-interface mutant and corresponding functional studies reveal how stability at the intra-PA interface governs channel formation. We also pinpoint the kinetic pH trigger for channel formation to a residue within PA's membrane-insertion loop at the inter-PA D2-D4 interface. Thus, γ-DPGA may function as a chemical cue, signaling that the local environment is appropriate for toxin assembly but inappropriate for channel formation.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Ion Channels/metabolism , Polyglutamic Acid/analogs & derivatives , Signal Transduction , Animals , Antigens, Bacterial/pharmacology , Bacterial Capsules/metabolism , Bacterial Toxins/pharmacology , Binding Sites , Cell Death , Cell Line , Hydrogen-Ion Concentration , Mice , Models, Molecular , Polyglutamic Acid/metabolism , Protein Binding , Protein Stability
2.
J Mol Biol ; 415(1): 159-74, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22063095

ABSTRACT

The three protein components of anthrax toxin are nontoxic individually, but they form active holotoxin complexes upon assembly. The role of the protective antigen (PA) component of the toxin is to deliver two other enzyme components, lethal factor and edema factor, across the plasma membrane and into the cytoplasm of target cells. PA is produced as a proprotein, which must be proteolytically activated; generally, cell surface activation is mediated by a furin family protease. Activated PA can then assemble into one of two noninterconverting oligomers, a homoheptamer and a homooctamer, which have unique properties. Herein we describe molecular determinants that influence the stoichiometry of PA in toxin complexes. By tethering PA domain 4 (D4) to domain 2 with two different-length cross-links, we can control the relative proportions of PA heptamers and octamers. The longer cross-link favors octamer formation, whereas the shorter one favors formation of the heptamer. X-ray crystal structures of PA (up to 1.45 Å resolution), including these cross-linked PA constructs, reveal that a hinge-like movement of D4 correlates with the relative preference for each oligomeric architecture. Furthermore, we report the conformation of the flexible loop containing the furin cleavage site and show that, for efficient processing, the furin site cannot be moved ~5 or 6 residues within the loop. We propose that there are different orientations of D4 relative to the main body of PA that favor the formation of either the heptamer or the octamer.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Bacillus anthracis/metabolism , Binding Sites , Cell Membrane/metabolism , Crystallography, X-Ray/methods , Cytoplasm/metabolism , Furin/metabolism , Models, Molecular , Protein Structure, Secondary , Protein Structure, Tertiary
3.
PLoS One ; 5(11): e13888, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21079738

ABSTRACT

BACKGROUND: Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation--a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood. METHODOLOGY: Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions. CONCLUSIONS: We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Circular Dichroism , Dimerization , Humans , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/ultrastructure , Mass Spectrometry , Membrane Proteins/chemistry , Microfilament Proteins , Microscopy, Electron , Models, Molecular , Mutation , Neoplasm Proteins/chemistry , Protein Binding , Protein Multimerization , Receptors, Cell Surface/chemistry , Receptors, Peptide
4.
Nat Struct Mol Biol ; 17(11): 1383-90, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21037566

ABSTRACT

The protein transporter anthrax lethal toxin is composed of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. After its assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LF(N)). The first α-helix and ß-strand of each LF(N) unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight into the mechanism of translocation-coupled protein unfolding.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Toxins/chemistry , Protein Unfolding , Antigens, Bacterial/metabolism , Antigens, Bacterial/physiology , Bacillus anthracis/metabolism , Bacterial Toxins/metabolism , Binding Sites , Models, Molecular , Protein Interaction Mapping , Protein Structure, Tertiary , Protein Transport/physiology , Structure-Activity Relationship
5.
J Mol Biol ; 399(5): 741-58, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20433851

ABSTRACT

Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-gamma-D-glutamic acid capsule. Atx is comprised of three proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT can assemble on host cell surfaces or extracellularly in plasma. We show that, under physiological conditions in bovine plasma, LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel-forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration, which allows them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that could circulate freely in the blood.


Subject(s)
Antigens, Bacterial/blood , Antigens, Bacterial/chemistry , Bacterial Toxins/blood , Bacterial Toxins/chemistry , Animals , Antigens, Bacterial/ultrastructure , Bacillus anthracis/metabolism , Binding Sites , Cattle , Circular Dichroism , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Protein Multimerization
6.
J Mol Biol ; 392(3): 614-29, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19627991

ABSTRACT

The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy-the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-A crystal structure of the PA octamer. The octamer comprises approximately 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.


Subject(s)
Antigens, Bacterial , Bacillus anthracis , Bacterial Toxins , Ion Channels , Protein Multimerization , Protein Structure, Quaternary , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Bacillus anthracis/chemistry , Bacillus anthracis/metabolism , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , CHO Cells , Cricetinae , Cricetulus , Crystallography, X-Ray , Electrophysiology , Guinea Pigs , Humans , Ion Channels/chemistry , Ion Channels/genetics , Ion Channels/metabolism , Mass Spectrometry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Peptide
SELECTION OF CITATIONS
SEARCH DETAIL
...