Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 465, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632312

ABSTRACT

High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.


Subject(s)
Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Animals , Mice , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Humidity , Proteomics , RNA, Ribosomal, 16S , Temperature , Transcription Factors , Bile Acids and Salts , Lithocholic Acid
2.
Front Pharmacol ; 13: 976757, 2022.
Article in English | MEDLINE | ID: mdl-36278149

ABSTRACT

Spinal cord injury (SCI) is a devastating central nervous system disease, caused by physical traumas. With the characteristic of high disability rate, catastrophic dysfunction, and enormous burden on the patient's family, SCI has become a tough neurological problem without efficient treatments. Contemporarily, the pathophysiology of SCI comprises complicated and underlying mechanisms, in which oxidative stress (OS) may play a critical role in contributing to a cascade of secondary injuries. OS substantively leads to ion imbalance, lipid peroxidation, inflammatory cell infiltration, mitochondrial disorder, and neuronal dysfunction. Hence, seeking the therapeutic intervention of alleviating OS and appropriate antioxidants is an essential clinical strategy. Previous studies have reported that traditional Chinese medicine (TCM) has antioxidant, anti-inflammatory, antiapoptotic and neuroprotective effects on alleviating SCI. Notably, the antioxidant effects of some metabolites and compounds of TCM have obtained numerous verifications, suggesting a potential therapeutic strategy for SCI. This review aims at investigating the mechanisms of OS in SCI and highlighting some TCM with antioxidant capacity used in the treatment of SCI.

3.
Sci Rep ; 12(1): 6977, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484284

ABSTRACT

Whether the relationship between type 2 diabetes mellitus (T2DM) and osteoarthritis (OA) can be solely attributed to the shared risk factors, such as obesity, remains controversial. Several studies have revealed the critical role of abnormal glycosylation in the pathogenesis of OA and T2DM. Therefore, we speculate that T2DM may contribute to the pathogenesis of OA through the intrinsic mechanisms of N-glycosylation aberrations. Using N-glycoproteomics, we compared the changes in N-glycosylated protein abundance in cartilage samples from patients with OA without and with T2DM (DM-OA), and from patients with traumatic joint injury (NC) as controls. We identified 847 N-glycosylation sites corresponding to 729 peptides fragments from 374 proteins. The number of N-glycosylated proteins in the DM-OA group tended to decrease compared with that in the OA and NC groups. We identified 22 upregulated and 1 down-regulated N-glycosylated peptides in the OA group compared to the NC group, while only fibronectin 1 (FN1) at position N1007, cartilage intermediate layer protein 1 (CILP) at N346, and collagen type VI alpha 1 chain (COL6A1) at N804, were also identified in the DM-OA group. Compared to the OA group, the downregulation of secreted protein acidic and rich in cysteine (SPARC) at N116, collagen type VI alpha 1 chain (COL6A2) at N785, and asporin (ASPN) at N282, and the upregulation of complement component C8 alpha chain (C8α) at N437, were the most remarkable alterations in the DM-OA group. The differentially expressed N-glycosylated proteins between the OA and DM-OA groups were mainly located extracellularly and enriched in the KEGG pathways involving PI3K/Akt signaling, focal adhesion, and ECM-receptor interaction. Their predicted protein-protein interactions were also depicted. We were thus able to show the general characteristics of N-glycosylation aberrations in OA and DM-OA. Moreover, the upregulated glycosylated complement C8α in the DM-OA group might augment membrane attack complex activity, thereby exacerbating cartilage destruction. Although further confirmation is required, our hypothesis proposes a possible explanation for the deduction that T2DM is an independent risk factor for OA.


Subject(s)
Diabetes Mellitus, Type 2 , Osteoarthritis , Collagen Type VI/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glycosylation , Humans , Osteoarthritis/pathology , Osteonectin/metabolism , Phosphatidylinositol 3-Kinases/metabolism
4.
Sci Rep ; 11(1): 5099, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33658635

ABSTRACT

With increased global warming, the impact of high temperature and humidity (HTH) on human health is increasing. Traditional Chinese medicine describes the Herb Yinchen as a remedy for reducing heat and eliminating dampness. This study focused on the impact of HTH conditions on mice and the potential protective effect of Herb Yinchen. Five male Balb/c mouse groups included two normal control groups, two HTH-exposed groups, and one Yinchen-treated group. For either three or ten days, normal and HTH-exposed mice were housed under normal or HTH (33 ± 2 °C,85% relative humidity) conditions, respectively. Yinchen-treated mice, housed under HTH conditions, received the Herb Yinchen decoction for three days. Metabolite profiles of plasma and liver samples from each group were analyzed using LC-MS/MS. Fecal DNA was extracted for 16S rDNA analysis to evaluate the intestinal microbiome. Spearman correlation analysis was performed on metabolites, bacteria, and bile acids that differed between the groups. We found that HTH altered the host metabolite profiles and reduced microbial diversity, causing intestinal microbiome imbalance. Interestingly, Herb Yinchen treatment improved HTH-mediated changes of the metabolite profiles and the intestinal microbiome, restoring them to values observed in normal controls. In conclusion, our study reveals that HTH causes intestinal bacterial disturbances and metabolic disorders in normal mice, while Herb Yinchen could afford protection against such changes.


Subject(s)
DNA, Ribosomal/genetics , Drugs, Chinese Herbal/administration & dosage , Dysbiosis/etiology , Hot Temperature/adverse effects , Humidity/adverse effects , Metabolic Diseases/etiology , Phytotherapy/methods , Protective Agents/administration & dosage , Tandem Mass Spectrometry/methods , Animals , Artemisia , Chromatography, Liquid/methods , Dysbiosis/prevention & control , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Male , Medicine, Chinese Traditional/methods , Metabolic Diseases/prevention & control , Mice , Mice, Inbred BALB C , Treatment Outcome
5.
Sci Rep ; 9(1): 18686, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31822775

ABSTRACT

High temperature and humidity (HTH) can cause diarrhea owing to food and drinking water contamination. However, their direct effects on gut microbiota and gastrointestinal inflammation are unknown. This study aimed to investigate the effects of HTH and probiotics on the microbiome. Twenty-one male mice were randomly assigned to normal control (NC), HTH, and broad-spectrum probiotic-treated (PR) groups. HTH and PR groups were regularly housed at 30 ± 0.5 °C with humidity of 85-90% for eight consecutive weeks. A broad-spectrum probiotic was administrated to PR-group mice from day 50 to 56. Clinical signs were observed and gut microbiota were analyzed via 16 S rRNA-based functional metagenomics. Intestinal pathology and the expression of defensins and pro-inflammatory cytokines were also assessed. Mice in the HTH and PR groups gradually developed sticky or loose feces. The HTH group developed a distinct microbiota profile associated with augmented metabolism and human-like pathophysiologies upon suppression of environmental sensing. Pathological assays indicated minimal enteritis, increased bacterial translocation, and elevated intestinal pro-inflammatory cytokine levels. Thus, ambient HTH directly contributes to gut dysbiosis and minimal enteritis, whereas probiotics partially normalized the microbiota and ameliorated gut inflammation. This study provides novel insights into the pathogenesis of environment-associated diseases and offers a potential therapeutic approach.


Subject(s)
Dysbiosis/physiopathology , Enteritis/microbiology , Gastrointestinal Microbiome , Hot Temperature , Humidity , Animals , Bacterial Translocation , Body Weight , Diarrhea/metabolism , Enzyme-Linked Immunosorbent Assay , Inflammation , Intestinal Mucosa/metabolism , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Organ Size , Probiotics/administration & dosage , RNA, Ribosomal, 16S/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...