Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1076404, 2023.
Article in English | MEDLINE | ID: mdl-36891049

ABSTRACT

Introduction: Inhibin DNA vaccine has already been proven to improve the fertility of animals. This study aimed to investigate the effects of a novel Anti-Müllerian hormone (AMH)-Inhibin (INH)-RF-amide-related peptides (RFRP) DNA vaccine on immune response and reproductive performance in buffalo. Methods: A total of 84 buffaloes were randomly divided into four groups and nasally immunized twice a day with 10 ml of either AMH-INH-RFRP DNA vaccines (3 × 1010 CFU/ml in group T1, 3 × 109 CFU/ml in group T2, and 3 × 108 CFU/ml in group T3) or PBS (as a control) for 3 days, respectively. All animals received a booster dose at an interval of 14 days. Results: ELISA assay revealed that primary and booster immunization significantly increased the anti-AMH, anti-INH, and anti-RFRP antibody titers in the T2 group compared with that in the T3 group. After the primary immunization, the antibody positive rate was significantly higher in the T2 group than that in the T3 group. In addition, ELISA results indicated that concentrations of E2, IFN-γ, and IL-4 were significantly higher in the antibody-positive (P) group compared to the antibody-negative (N) group. In contrast, there was no significant difference in the concentrations of P4 between the P and N groups. Ultrasonography results revealed a highly significant increase of 2.02 mm in the diameter of ovulatory follicles in the P group compared to the N group. In parallel, growth speed of dominant follicles was significantly higher in the P group than that in the N group (1.33 ± 1.30 vs 1.13 ± 0.12). Furthermore, compared to N group, the rates of oestrus, ovulation, and conception were also significantly higher in the P group. Conclusion: The novel AMH-INH-RFRP DNA vaccine improves the proportion of oestrus, ovulation, and conception in buffalo by promoting the production of E2 and the growth of follicles.


Subject(s)
Inhibins , Vaccines, DNA , Female , Animals , Buffaloes/physiology , Anti-Mullerian Hormone , Fertility , Immunization
2.
Cells ; 12(4)2023 02 20.
Article in English | MEDLINE | ID: mdl-36831340

ABSTRACT

Granulosa cells (GCs) are essential for follicular growth, oocyte maturation, and steroidogenesis in the ovaries. Interleukin (IL)-11 is known to play a crucial role in the decidualization of the uterus, however, the expression of the IL-11 system (IL-11, IL-11Rα, and gp130) in the bovine ovary and its exact role in GCs have not been extensively studied. In this study, we identified the IL-11 signaling receptor complex in the bovine ovary and investigated the regulatory effects and underlying mechanism of IL-11Rα on the proliferation and steroidogenesis of GCs. We observed that the IL-11 complex was highly expressed in the GCs of large follicles. IL-11Rα knockdown significantly inhibited GC proliferation by inducing cell cycle arrest at the G1 phase, along with a significant downregulation of proliferating cell nuclear antigen (PCNA) and Cyclin D1 (CCND1) protein, and induced GC apoptosis by significantly upregulating the ratio of BCL-2-associated X protein (BAX) and B-cell lymphoma-2 (BCL-2). In addition, IL-11Rα knockdown attenuated the Janus kinase (JAK) 1-signal transducer and activator of transcription 3 (STAT3) signaling, which is related to cell proliferation and apoptosis. Furthermore, the enzyme-linked immunosorbent assay (ELISA) indicated that IL-11Rα silencing decreased the basal and forskolin (FSK)-stimulated secretions of estradiol and progesterone in GC culture medium concomitantly with a remarkable decrease in cytochrome P450 family 19 subfamily A member 1 (CYP19A1) and steroidogenic acute regulatory protein (StAR). We subsequently determined that this reduction in steroidogenesis was in parallel with the decrease in phosphorylations of protein kinase A (PKA) substrates, cAMP-response element binding protein (CREB), extracellular regulated protein kinase (ERK) 1/2, and p38 mitogen-activated protein kinase (MAPK). Taken together, these data indicate that the effects of IL-11/IL-11Rα on the proliferation and steroidogenesis in bovine GCs is mediated by the JAK1-STAT3, PKA-CREB, p38MAPK, and ERK1/2 signaling pathways. Our findings provide important insights into the local action of the IL-11 system in regulating ovarian function.


Subject(s)
Granulosa Cells , Interleukin-11 , Female , Cattle , Animals , Granulosa Cells/metabolism , Progesterone/pharmacology , Cell Proliferation/physiology , Receptors, Interleukin-11/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...