Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 444: 138532, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38330600

ABSTRACT

Chemical vapor generation (CVG) was used as a gaseous sample introduction technique for the visual/smartphone RGB readout colorimetric system, with the advantages of efficient matrix elimination and high vapor generation efficiency, this analytical system exhibits a good selectivity and sensitivity. Sulfide ion (S2-) in solution was transformed to its volatile form (H2S), the generated H2S reacted with a silver-containing metal organic framework (Ag-BTC) selectively, Ag2S was thus generated. Ag-BTC (fabricated on paper sheet) changed from white to dark brown, the color variance was identified by smartphone and naked-eye simultaneously. Under the optimized conditions, a limit of detection of 0.02 µg/mL was obtained by naked-eye. Several water samples and commercial food additives were analyzed for confirming its accuracy and potential application for on-site detection, recoveries ranging 94-110 % were obtained. To meet the demand of on-site analysis of S2-, this colorimetric system was integrated in a portable/miniaturized analytical kit. It is an easy-used, affordable and portable analytical kit for S2- detection in field.


Subject(s)
Colorimetry , Smartphone , Limit of Detection , Colorimetry/methods , Water , Gases , Sulfides
2.
Sci Rep ; 10(1): 3990, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132642

ABSTRACT

An excellent pre-column fluorescent derivatization reagent N-acetylhydrazine acridone for the quantitative determination of malondialdehyde was synthesized. Malondialdehyde was derivatized at 80 °C for 30 min in the presence of trichloroacetic acid. The separation of the derivative was performed on an Agilent ZORBAX SB-C18 column in conjunction with gradient elution. The excitation and emission wavelengths were 370 nm and 420 nm, respectively. The developed method demonstrated good linear relationship in the range of 0.02 pmol to 2.5 pmol (r = 0.9998). The calculated limit of detection and limit of quantification were 2.5 fmol and 8.3 fmol, respectively. The analytical precisions of the method were in the range of 1.36-2.27% (intra-day) and 2.36-3.92% (inter-day) respectively. The method was sensitive, specific and simple. It was successfully implemented to analysis the malondialdehyde in rat prostate.


Subject(s)
Limit of Detection , Malondialdehyde/analysis , Prostate/chemistry , Animals , Chromatography, High Pressure Liquid , Linear Models , Male , Malondialdehyde/chemistry , Malondialdehyde/isolation & purification , Rats , Spectrometry, Fluorescence
3.
RSC Adv ; 9(12): 6717-6723, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518507

ABSTRACT

A novel fluorescence labeling reagent N-acetylhydrazine acridone (AHAD) was designed and synthesized. A highly sensitive high performance liquid chromatography (HPLC) method coupled with fluorescence detection to determine benzaldehyde after derivatization with AHAD was developed. Optimum derivatization was obtained at 40 °C for 30 min with trichloroacetic acid as catalyst. Benzaldehyde derivative was separated on a reversed-phase SB-C18 column in conjunction with a gradient elution and detected by fluorescence detection at excitation and emission wavelengths of 371 nm and 421 nm. The established method exhibited excellent linearity over the injected amount of benzaldehyde of 0.003 to 5 nmol mL-1. The method was successfully applied to the determination of serum semicarbazide-sensitive amine oxidase (SSAO) activity in humans. SSAO is a significant biomarker because serum SSAO activity is elevated in patients with Alzheimer's disease, vascular disorders, heart disease and diabetes mellitus. It was demonstrated that the SSAO activity of the hyperglycemic group (60 ± 4 nmol mL-1 h-1) was significantly higher than that of normal blood sugar group (44 ± 4 nmol mL-1 h-1) with P < 0.05.

4.
Regen Biomater ; 5(4): 239-250, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30094063

ABSTRACT

Konjac glucomannan (KGM) is recognized as a safe material for its health-promoting benefits and thus widely used in various fields including pharmaceutical industry. In recent decades, the combination of collagen and KGM attracts more attentions for biomedical purpose, especially the hybrid films of collagen-KGM or collagen-KGM-polysaccharide. In this study, to further and deeply develop the intrinsic values of both collagen and KGM as biomaterials, a novel kind of composite hydrogel comprising collagen and KGM at a certain ratio was fabricated under mild conditions via fibrillogenesis process of the aqueous blends of collagen and KGM that experienced deacetylation simultaneously. The chemical composition, microcosmic architectures, swelling behavior, biodegradation and dynamic mechanic properties of such resulted composite hydrogels were systematically investigated. Biologic experiments, including cell culture in vitro and hypodermic implantation in vivo, were also conducted on these collagen/KGM composite hydrogels to evaluate their biologic performances. The relevant results prove that, based on collagen self-assembly behavior, this synthesis strategy is efficient to construct a composite hydrogel of collagen/KGM with improved mechanical properties, biodegradability, excellent biocompatibility and bioactivity, which are promising for potential biomedical applications such as tissue engineering and regenerative medicine.

5.
Mar Pollut Bull ; 126: 428-435, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29421121

ABSTRACT

Ship-source greenhouse gas (GHG) emissions could increase by up to 250% by 2050 from their 2012 levels, owing to increasing global freight volumes. Binding international legal agreements to regulate GHGs, however, are lacking as technical solutions remain expensive, and crucial industrial support is absent. In 2003, the International Maritime Organization adopted Resolution A.963 (23) to regulate shipping CO2 emissions via technical, operational, and market-based routes. However, progress has been slow and uncertain; there is no concrete emission reduction target or definitive action plan. Yet, a full-fledged roadmap may not even emerge until 2023. In this policy analysis, we revisit the progress of technical, operational, and market-based routes and the associated controversies. We argue that 1) a performance-based index, though good-intentioned, has loopholes affecting meaningful CO2 emission reductions driven by technical advancements; 2) using slow steaming to cut energy consumption stands out among all operational solutions thanks to its immediate and obvious results, but with the already slow speed in practice, this single source has limited emission reduction potential; 3) without a technology-savvy shipping industry, a market-based approach is essentially needed to address the environmental impact. To give shipping a 50:50 chance for contributing fairly and proportionately to keep global warming below 2°C, deep emission reductions should occur soon.


Subject(s)
Air Pollutants , Air Pollution/prevention & control , Carbon Dioxide , Global Warming/prevention & control , Ships , Industry , Public Policy
SELECTION OF CITATIONS
SEARCH DETAIL
...