Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Signal Transduct Target Ther ; 8(1): 432, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949875

ABSTRACT

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.


Subject(s)
COVID-19 , Microbiota , Pneumonia , Humans , COVID-19/genetics , COVID-19/metabolism , SARS-CoV-2/genetics , Respiration, Artificial , Lung , Pneumonia/metabolism , Bacteria
2.
Food Funct ; 12(2): 656-667, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33404569

ABSTRACT

Limited studies reported mechanisms by which microRNAs (miRNA) are interlinked in the etiology of fructose-induced non-alcoholic fatty liver disease (NAFLD). Here, we aimed to investigate the significance of miRNAs in fructose-induced NAFLD pathogenesis through unbiased approaches. In experiment I, C57BL/6N mice were fed either water or 34% fructose for six weeks ad libitum. In experiment II, time course effects of fructose intervention were monitored using the same conditions; mice were killed at the baseline, fourth, and sixth weeks. Bioinformatic analyses for hepatic proteomics revealed that SREBP1 is the most significant upstream regulator influenced by fructose; miR-33-5p (miR-33) was identified as the key miRNA responsible for SREBP1 regulation upon fructose intake, which was validated by in vitro transfection assay. In experiment II, we confirmed that the longer mice consumed fructose, the more severe liver injury markers (e.g., serum AST) appeared. Moreover, hepatic Srebp1 mRNA expression was increased depending upon the duration of fructose consumption. Hepatic miR-33 was time-dependently decreased by fructose while serum miR-33 expression was increased; these observations indicated that miR-33 from the liver might be released upon cell damage. Finally we observed that fructose-induced ferroptosis might be a cause of liver toxicity, resulting from oxidative damage. Collectively, our findings suggest that fructose-induced oxidative damage induces ferroptosis, and miR-33 could be used as a serological biomarker of fructose-induced NAFLD.


Subject(s)
Fructose/adverse effects , Lipogenesis/physiology , Liver/metabolism , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/blood , Animals , Biomarkers/blood , Diet , Female , Fructose/administration & dosage , Gene Expression Regulation/drug effects , Lipogenesis/genetics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
3.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764267

ABSTRACT

Mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP+ to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice (p = 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway (Pparg, Znf423, and Fat1) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.


Subject(s)
Fatty Acids/metabolism , Isocitrate Dehydrogenase/genetics , Mitochondria/genetics , Muscle Development/genetics , Animals , Energy Metabolism/genetics , Fatty Acids/genetics , Humans , Isocitrate Dehydrogenase/deficiency , Lipid Metabolism/genetics , Liver/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Oxidation-Reduction
4.
Conserv Physiol ; 8(1): coz104, 2020.
Article in English | MEDLINE | ID: mdl-32190328

ABSTRACT

The gut microbiota diversity of eight panda cubs was assessed during a dietary switch.Gut microbiota diversity of panda cubs significantly decreased after bamboo consumption.Carnivorous species living on a plant-based diet possess low microbial diversity.Mice were fed a bamboo diet but did not display low gut microbiota diversity.Giant pandas have an exclusive diet of bamboo; however, their gut microbiotas are more similar to carnivores than herbivores in terms of bacterial composition and their functional potential. This is inconsistent with observations that typical herbivores possess highly diverse gut microbiotas. It is unclear why the gut bacterial diversity of giant pandas is so low. Herein, the dynamic variations in the gut microbiota of eight giant panda cubs were measured using 16S rRNA gene paired-end sequencing during a dietary switch. Similar data from red panda (an herbivorous carnivore) and carnivorous species were compared with that of giant pandas. In addition, mice were fed a high-bamboo diet (80% bamboo and 20% rat feed) to determine whether a bamboo diet could lower the gut bacterial diversity in a non-carnivorous digestive tract. The diversity of giant panda gut microbiotas decreased significantly after switching from milk and complementary food to bamboo diet. Carnivorous species living on a plant-based diet, including giant and red pandas, possess a lower microbial diversity than other carnivore species. Mouse gut microbiota diversity significantly increased after adding high-fibre bamboo to their diet. Findings suggest that a very restricted diet (bamboo) within a carnivorous digestive system might be critical for shaping a low gut bacterial diversity in giant pandas.

5.
Ecol Evol ; 10(2): 1012-1028, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32015861

ABSTRACT

Reintroduction is a key approach in the conservation of endangered species. In recent decades, many reintroduction projects have been conducted for conservation purposes, but the rate of success has been low. Given the important role of gut microbiota in health and diseases, we questioned whether gut microbiota would play a crucial role in giant panda's wild-training process. The wild procedure is when captive-born babies live with their mothers in a wilderness enclosure and learn wilderness survival skills from their mothers. During the wild-training process, the baby pandas undergo wilderness survival tests and regular physical examinations. Based on their performance through these tests, the top subjects (age 2-3 years old) are released into the wild while the others are translocated to captivity. After release, we tracked one released panda (Zhangxiang) and collected its fecal samples for 5 months (January 16, 2013 to March 29 2014). Here, we analyzed the Illumina HiSeq sequencing data (V4 region of 16S rRNA gene) from captive pandas (n = 24), wild-training baby pandas (n = 8) of which 6 were released and 2 were unreleased, wild-training mother pandas (n = 8), one released panda (Zhangxiang), and wild giant pandas (n = 18). Our results showed that the gut microbiota of wild-training pandas is significantly different from that of wild pandas but similar to that of captive ones. The gut microbiota of the released panda Zhangxiang gradually changed to become similar to those of wild pandas after release. In addition, we identified several bacteria that were enriched in the released baby pandas before release, compared with the unreleased baby pandas. These bacteria include several known gut-health related beneficial taxa such as Roseburia, Coprococcus, Sutterella, Dorea, and Ruminococcus. Therefore, our results suggest that certain members of the gut microbiota may be important in panda reintroduction.

6.
Alcohol ; 85: 13-20, 2020 06.
Article in English | MEDLINE | ID: mdl-31734308

ABSTRACT

Alcohol consumption is a critical risk factor for hepatic pathogenesis, including alcoholic liver diseases (ALD), but implications of alcohol-induced dysregulation of microRNA (miRNA) in ALD pathogenesis are not completely understood. In the present study, C57BL/6J male mice were treated with saline (CON; oral gavage; n = 8) or alcohol (EtOH; 3 g/kg body weight; oral gavage; n = 8) for 7 days. A total of 599 miRNAs and 158 key mRNAs related to fatty liver and hepatotoxicity pathways were assessed in mice liver tissues. The mRNA expression datasets were then utilized to predict interactions with miRNAs that were changed by alcohol consumption. Predicted miRNA-mRNA interactions were validated using in vitro miRNA transfection experiments. The results showed that let-7a was significantly decreased in the EtOH group and Rb1 mRNA was predicted as a target gene. This was further supported by an inverse correlation of RB1 and let-7a expression in mice liver tissue. Additionally, key protein expressions involved in RB1-apoptosis axis [i.e., p73, cleaved CASP-3 (cCASP-3), and cCASP-7] showed a trend of increase in the EtOH mice; this was also confirmed by capase-3 enzyme activity and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay in livers of mice that had consumed alcohol. In line with our in vivo observations, alcohol treatment suppressed the let-7a expression and subsequently upregulated p73, cCASP-3, and cCASP-7 protein expressions in mice hepatocytes. Additional proteins in the apoptosis regulatory pathway (i.e., MDM2-p53 axis) were significantly changed in response to let-7a suppression in the cells. Taken together, the current study provides mechanistic evidence that alcohol consumption-induced let-7a suppression results in the upregulation of RB1, thereby promoting hepatic apoptosis through induction of pro-apoptotic proteins (e.g., p73), and by, at least in part, preventing MDM2-mediated p53 degradation.


Subject(s)
Apoptosis/drug effects , Ethanol/pharmacology , Liver Diseases, Alcoholic/genetics , MicroRNAs/genetics , Retinoblastoma Binding Proteins/genetics , Alcohol Drinking/metabolism , Animals , Cell Proliferation , Fatty Liver/genetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Up-Regulation
7.
Genes (Basel) ; 10(9)2019 09 19.
Article in English | MEDLINE | ID: mdl-31546946

ABSTRACT

Mitochondrial nicotinamide adenine dinucleotide phosphate (NADP+)-dependent isocitrate dehydrogenase (IDH2) plays a key role in the intermediary metabolism and energy production via catalysing oxidative decarboxylation of isocitrate to α-ketoglutarate in the tricarboxylic acid (TCA) cycle. Despite studies reporting potential interlinks between IDH2 and various diseases, there is lack of effort to comprehensively characterize signature(s) of IDH2 knockout (IDH2 KO) mice. A total of 6583 transcripts were identified from both wild-type (WT) and IDH2 KO mice liver tissues. Afterwards, 167 differentially expressed genes in the IDH2 KO group were short-listed compared to the WT group based on our criteria. The online bioinformatic analyses indicated that lipid metabolism is the most significantly influenced metabolic process in IDH2 KO mice. Moreover, the TR/RXR activation pathway was predicted as the top canonical pathway significantly affected by IDH2 KO. The key transcripts found in the bioinformatic analyses were validated by qPCR analysis, corresponding to the transcriptomics results. Further, an additional qPCR analysis confirmed that IDH2 KO caused a decrease in hepatic de novo lipogenesis via the activation of the fatty acid ß-oxidation process. Our unbiased transcriptomics approach and validation experiments suggested that IDH2 might play a key role in homeostasis of lipid metabolism.


Subject(s)
Isocitrate Dehydrogenase/genetics , Lipogenesis , Liver/metabolism , Transcriptome , Animals , Fatty Acids/metabolism , Female , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Signal Transduction
8.
Br J Nutr ; 122(7): 769-779, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31262372

ABSTRACT

For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.


Subject(s)
Down-Regulation , Enzymes/metabolism , Fructose/metabolism , Liver/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Transcriptome , Xenobiotics/metabolism , Animals , Liver/drug effects , Mice , Mice, Inbred C57BL
9.
Front Microbiol ; 9: 229, 2018.
Article in English | MEDLINE | ID: mdl-29503636

ABSTRACT

Bamboo-eating giant panda (Ailuropoda melanoleuca) is an enigmatic species, which possesses a carnivore-like short and simple gastrointestinal tract (GIT). Despite the remarkable studies on giant panda, its diet adaptability status continues to be a matter of debate. To resolve this puzzle, we investigated the functional potential of the giant panda gut microbiome using shotgun metagenomic sequencing of fecal samples. We also compared our data with similar data from other animal species representing herbivores, carnivores, and omnivores from current and earlier studies. We found that the giant panda hosts a bear-like gut microbiota distinct from those of herbivores indicated by the metabolic potential of the microbiome in the gut of giant pandas and other mammals. Furthermore, the relative abundance of genes involved in cellulose- and hemicellulose-digestion, and enrichment of enzymes associated with pathways of amino acid degradation and biosynthetic reactions in giant pandas echoed a carnivore-like microbiome. Most significantly, the enzyme assay of the giant panda's feces indicated the lowest cellulase and xylanase activity among major herbivores, shown by an in-vitro experimental assay of enzyme activity for cellulose and hemicellulose-degradation. All of our results consistently indicate that the giant panda is not specialized to digest cellulose and hemicellulose from its bamboo diet, making the giant panda a good mammalian model to study the unusual link between the gut microbiome and diet. The increased food intake of the giant pandas might be a strategy to compensate for the gut microbiome functions, highlighting a strong need of conservation of the native bamboo forest both in high- and low-altitude ranges to meet the great demand of bamboo diet of giant pandas.

10.
Front Microbiol ; 8: 1929, 2017.
Article in English | MEDLINE | ID: mdl-29056930

ABSTRACT

While the skin microbiome has been shown to play important roles in health and disease in several species, the effects of altitude on the skin microbiome and how high-altitude skin microbiomes may be associated with health and disease states remains largely unknown. Using 16S rRNA marker gene sequencing, we characterized the skin microbiomes of people from two racial groups (the Tibetans and the Hans) and of three local pig breeds (Tibetan pig, Rongchang pig, and Qingyu pig) at high and low altitudes. The skin microbial communities of low-altitude pigs and humans were distinct from those of high-altitude pigs and humans, with five bacterial taxa (Arthrobacter, Paenibacillus, Carnobacterium, and two unclassified genera in families Cellulomonadaceae and Xanthomonadaceae) consistently enriched in both pigs and humans at high altitude. Alpha diversity was also significantly lower in skin samples collected from individuals living at high altitude compared to individuals at low altitude. Several of the taxa unique to high-altitude humans and pigs are known extremophiles adapted to harsh environments such as those found at high altitude. Altogether our data reveal that altitude has a significant effect on the skin microbiome of pigs and humans.

11.
J Food Prot ; 80(3): 420-424, 2017 03.
Article in English | MEDLINE | ID: mdl-28199148

ABSTRACT

The aim of this study was to determine the presence and characteristics of Escherichia coli in ready-to-eat (RTE) foods. A total of 300 RTE foods samples were collected in Shaanxi Province, People's Republic of China: 50 samples of cooked meat, 165 samples of vegetable salad, 50 samples of cold noodles, and 35 samples of salted boiled peanuts. All samples were collected during summer (in July to October) 2011 and 2012 and surveyed for the presence of E. coli . E. coli isolates recovered were classified by phylogenetic typing using a PCR assay. The presence of Shiga toxin genes 1 (stx1) and 2 (stx2) was determined for these E. coli isolates by PCR, and all isolates were analyzed for antimicrobial susceptibility and the presence of class 1 integrons. Overall, 267 (89.0%) RTE food samples were positive for E. coli : 49 cold noodle, 46 cooked meat, 150 salad vegetable, and 22 salted boiled peanut samples. Of the 267 E. coli isolates, 73.0% belong to phylogenetic group A, 12.4% to group B1, 6.4% to group B2, and 8.2% to group D. All isolates were negative for both Shiga toxin genes. Among the isolates, 74.2% were resistant to at least one antimicrobial agent, and 17.6% were resistant to three or more antimicrobial agents. Resistance to ampicillin (75.6% of isolates) and tetracycline (73.1% of isolates) was most frequently detected; 26.2% of E. coli isolates and 68.8% of multidrug-resistant E. coli isolates were positive for class 1 integrons. All isolates were sensitive to amikacin. Our findings indicate that RTE foods in Shaanxi were commonly contaminated with antibiotic-resistant E. coli , which may pose a risk for consumer health and for transmission of antibiotic resistance. Future research is warranted to track the contamination sources and develop appropriate steps that should be taken by government, industry, and retailers to reduce microbial contamination in RTE foods.


Subject(s)
Escherichia coli/isolation & purification , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents , China , Drug Resistance, Bacterial/genetics , Food Microbiology , Phylogeny
12.
PLoS One ; 11(12): e0167851, 2016.
Article in English | MEDLINE | ID: mdl-27936183

ABSTRACT

Phosphatase and tensin homolog (PTEN) is a tumor-suppressor gene. PTEN pseudogene (PTENp) acts as an endogenous RNA, which regulates its parental gene by competitively binding to the 3' UTR of PTEN gene in the human. Despite the importance of this pseudogene, little is known about the molecular evolution of PTENp in mammals. In this study, we identified 37 pseudogenes from 65 mammalian genomes. Among them, 32 were from rodents or primates. Phylogenetic analyse showed a complex evolutionary history of this gene family. Some PTENps were shared both in primates and rodents. However, some PTENps were shown to be species-specific, such as the tasmanian devil PTENp1, nine banded armadillo PTENp1 and gibbon PTENp1. Most interestingly, the naked mole rat (NMR), an anticancer model organism, possessed 17 copies of PTENps, which were classified into four clades based on the phylogenetic analyses. Furthermore, we found that all the 3'UTR of PTEN and PTENps shared common microRNA (MicroRNA) binding sites in NMR, based on our prediction of specific MicroRNA binding sites. Our findings suggested that multiple gene duplications have occurred in the formation of PTEN/PTENp gene family during the evolution of mammals. Some PTENps were relatively ancient and were shared by primates and rodents; others were newly originated through species- specific gene duplications. PTENps in NMR may function as competitive endogenous RNAs (ceRNAs) to regulate their counterpart genes by competing for common MicroRNAs, which may be one of the interpretations for the cancer resistance in NMR.


Subject(s)
Evolution, Molecular , Mammals/genetics , PTEN Phosphohydrolase/genetics , Pseudogenes , 3' Untranslated Regions , Animals , Phylogeny
14.
Yi Chuan ; 37(1): 8-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25608808

ABSTRACT

Pseudogene is a DNA fragment with high sequence similarity to the corresponding functional gene. Because of accumulation of multiple mutations, pseudogenes have lost their original functions. Previous studies indicated that pseudogenes are dysfunctional relatives of the corresponding functional genes, and are noises in the process of genome evolution. However, with the development of molecular biotechnologies, more and more studies have demonstrated that pseudogenes possess important biologic functions. For example, some pseudogene could regulate the expression of functional genes by competitively binding to the miRNAs, some could produce endogenous small interference RNAs to negatively regulate the expression of functional genes, and some even could encode functional proteins. In this review, we summarize the recent research progresses of pseudogenes through four aspects: the classification, identification, function, and particularly the roles in cancers.


Subject(s)
Neoplasms/genetics , Pseudogenes , Animals , Gene Expression Regulation, Neoplastic , Humans , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...