Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401295, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769660

ABSTRACT

Transformation optics (TO) provides a powerful tool to manipulate electromagnetic waves, enabling the design of invisibility cloaks, which can render objects invisible. Despite many years of research, however, invisibility cloaks experimentally realized thus far can only operate at a single frequency. The narrow bandwidth significantly restricts the practical applications of invisibility cloaks and other TO devices. Here, a general design strategy is proposed to realize a multiband anisotropic metamaterial characterized by two principal permittivity components, i.e., one infinite and the other spatially gradient. Through a proper transformation and combination of such metamaterials, an omnidirectional invisibility cloak is experimentally implemented, which is impedance-matched to free space at multiple frequencies. Both far-field numerical simulations and near-field experimental mappings confirm that this cloak can successfully suppress scattering from multiple large-scale objects simultaneously at 5 and 10 GHz. The design strategy and corresponding practical realization bring multiband transformation optical devices one step closer to reality.

2.
Adv Mater ; 36(8): e2308298, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013603

ABSTRACT

The ideal electromagnetic transparency refers to the ability of an object to remain scatteringless to any incoming waves, resulting in vacuum invisibility. However, natural solid substances can hardly be transparent in free space as they are responsive to external polarizations. Completely eliminating the polarization effect of an obstacle under arbitrary field illumination is a long-standing scientific challenge. Here, it is shown that a subwavelength meta-atom can be nearly ideally transparent in the vacuum. The overall vacuum-like property of the meta-atom is achieved through judiciously designing its internal polarization and magnetization. Remarkably, any large-scale objects made by stacking the meta-atoms inherit the vacuum-like property and are scatteringless in free space. By both the simulations and experiments, the meta-atom's peculiar property is reasonably verified. The proposed meta-atoms are excellent candidates for a wide range of applications, such as perfect radar radomes, scatteringless walls, filtering devices, and self-stealth materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...