Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(20): 8932-8945, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38710016

ABSTRACT

A significant challenge that warrants attention is the influence of eutrophication on the biogeochemical cycle of emerging contaminants (ECs) in aquatic environments. Antibiotics pollution in the eutrophic Pearl River in South China was examined to offer new insights into the effects of eutrophication on the occurrence, air-water exchange fluxes (Fair-water), and vertical sinking fluxes (Fsinking) of antibiotics. Antibiotics transferred to the atmosphere primarily through aerosolization controlled by phytoplankton biomass and significant spatiotemporal variations were observed in the Fair-water of individual antibiotics throughout all sites and seasons. The Fsinking of ∑AB14 (defined as a summary of 14 antibiotics) was 750.46 ± 283.19, 242.71 ± 122.87, and 346.74 ± 249.52 ng of m-2 d-1 in spring, summer, and winter seasons. Eutrophication indirectly led to an elevated pH, which reduced seasonal Fair-water of antibiotics, sediment aromaticity, and phytoplankton hydrophobicity, thereby decreasing antibiotic accumulation in sediments and phytoplankton. Negative correlations were further found between Fsinking and the water column daily loss of antibiotics with phytoplankton biomass. The novelty of this study is to provide new complementary knowledge for the regulation mechanisms of antibiotics by phytoplankton biological pump, offering novel perspectives and approaches to understanding the coupling between eutrophication and migration and fate of antibiotics in a subtropical eutrophic river.


Subject(s)
Anti-Bacterial Agents , Eutrophication , Rivers , Rivers/chemistry , Anti-Bacterial Agents/analysis , Phytoplankton , Water Pollutants, Chemical/analysis , Environmental Monitoring , China , Seasons
2.
Environ Sci Technol ; 57(37): 14002-14014, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37667590

ABSTRACT

The spatiotemporal bioaccumulation, trophic transfer of antibiotics, and regulation of the phytoplankton biological pump were quantitatively evaluated in the Pearl River, South China. The occurrence of antibiotics in organisms indicated a significant spatiotemporal trend associated with the life cycle of phytoplankton. Higher temporal bioaccumulation factors (BAFs) were found in phytoplankton at the bloom site, while lower BAFs of antibiotics in organisms could not be explained by phytoplankton biomass dilution but were attributed to the low bioavailability of antibiotics, which was highly associated with distribution coefficients (R2 = 0.480-0.595, p < 0.05). Such lower BAFs of antibiotics in phytoplankton at higher biomass sites hampered the entry of antibiotics into food webs, and trophic dilutions were subsequently observed for antibiotics except for ciprofloxacin (CFX) and sulfamerazine (SMZ) at sites with blooms in all seasons. Distribution of CFX, norfloxacin (NFX), and sulfapyridine (SPD) showed further significant positive relationships with the plasma protein fraction (R2 = 0.275-0.216, p < 0.05). Both mean BAFs and trophic magnification factors (TMFs) were significantly negatively correlated with phytoplankton biomass (R2 = 0.661-0.741, p < 0.05). This study highlights the importance of the biological pump in the regulation of spatiotemporal variations in bioaccumulation and trophic transfer of antibiotics in anthropogenic-impacted eutrophic rivers in subtropical regions.


Subject(s)
Anti-Bacterial Agents , Rivers , Bioaccumulation , Ciprofloxacin , Membrane Transport Proteins , Phytoplankton
3.
Sci Total Environ ; 868: 161731, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36681335

ABSTRACT

Increasing concentration of endocrine disrupting compounds (EDCs) are released into the aquatic environment, resulting in irreversible effects on the endocrine and reproductive systems of biota. How the liver enzymes affect metabolic rate of these compounds and thus their structure-related trophic transfer in aquatic food webs remains largely unknown. In this study, the concentrations of seven common EDCs were measured in 15 species of fish, 7 invertebrate species and plankton collected from Liuxi River to Pearl River, South China. The mean ΣEDC concentrations generally were found to increase as follows: plankton (29.59 ng g-1 dw) < invertebrate species (50.69 ng g-1 dw) < fish (122.56 ng g-1 dw), with 4-nonylphenol (4-NP) and bisphenol S (BPS) as the predominant components. Trophic magnification factors (TMFs) values were >1.0 ranged from 1.30 (BPS) to 4.07 (4-NP), indicating trophic magnification potential. Measurement of metabolism and activities of microsomal CYP450 enzymes were performed in the fish liver microsomes of Hypophthalmichthys molitrix ([TL] = 2.27), Cirrhinus mrigala (TL = 3.87) and Odontamblyopus rubicundus (TL = 4.73). TMFs were significantly negatively correlated with the obtained in vitro biotransformation clearance rates (CL in vitro) of EDCs and CYP450 enzymes activities. A multiple linear regression model indicated that biotransformation clearance is a more powerful predictor for TMFs than the hydrophobicity (Kow) to drive changes in the studied aquatic food web trophodynamics.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Food Chain , Water Pollutants, Chemical/analysis , Invertebrates , Fishes/metabolism , Endocrine Disruptors/analysis , Plankton , China , Biota , Environmental Monitoring , Hydrophobic and Hydrophilic Interactions
4.
Sci Total Environ ; 820: 153285, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35066051

ABSTRACT

Information on trophodynamics of antibiotics and subsequent relationships to antibiotic metabolism in river ecosystem is still unavailable, limiting the evaluation of their bioaccumulation and trophodynamics in aquatic food webs. In the present study, concentrations and relative abundance of 11 antibiotics were investigated in surface water, sediment and 22 aquatic taxa (e.g., fish, invertebrates and plankton) from Pearl River, South China. The logarithmic bioaccumulation factors (log BAFs) of antibiotics generally showed positive relationships with their log D (pH-adjusted log Kow), implying that their bioaccumulation of ionizable antibiotics depends on it is in an ionized form. Higher BAFs of antibiotics in benthic biota were observed than those in fish, indicating that sediment ingestion was a possible route of antibiotic exposure. The logarithmic biota-sediment accumulation factors (log BSAFs) of benthic biota increased when log D increased from -4.79 to -0.01, but declined thereafter. Trophodynamics of antibiotics was investigated, and intrinsic clearance were measured in liver microsomes of Tilapia zillii (trophic level [TL]: 2.5), Anabas testudineu (TL: 3.9), and Coilia grayi (TL: 5.0). Only ciprofloxacin (CFX) showed significant trophic magnification (Trophic Magnification Factor [TMF] = 1.95), and a higher metabolism rate in lower trophic levels suggest that metabolic biotransformation play a significant role in driving biomagnification of antibiotics.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/metabolism , Biological Availability , Biotransformation , China , Ecosystem , Environmental Monitoring , Fishes/metabolism , Rivers , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 55(3): 1811-1821, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33496167

ABSTRACT

The present three-year field investigation on sediment in the eutrophic Pearl River in South China showed that concentrations of sulfonamides (SAs), fluoroquinolones (FQs), and macrolides (MLs) in the river areas where blooms occurred were 4.6, 2.4, and 3.4 times higher than those without blooms, respectively, but the respective concentrations of tetracycline (TC) and oxytetracycline (OTC) in the areas with blooms were 2.6 and 3.8 times lower than those without. Significant positive correlations were found between concentrations of chlorophyll a in water and most antibiotics in sediment. Further investigation in each season suggested that lower diffusion but higher sinking were possible reasons driving the burial of sulfapyridine (SPD), sulfamethoxazole (SMX), and trimethoprim (TMP) in sediment from areas where blooms occurred, with burial rates up to 14.86, 48.58, and 52.19 g month-1, respectively. Concentrations of TCs in both water and sediment were inversely correlated with phytoplankton biomass, which might be related to the enhanced biodegradation capacity of bacteria caused by phytoplankton blooms. Phytoplankton also affected concentrations of antibiotics in the snail, Bellamya purificata, with higher values in March but lower values in September. The concentration of antibiotics in snails positively correlated with that in sediment when snails were dormant but with antibiotics in water after dormancy.


Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , China , Chlorophyll A , Environmental Monitoring , Phytoplankton , Snails , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 27(29): 36132-36146, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32557028

ABSTRACT

Isotopic niches reflect the basic structure and functioning of river food webs; however, their response to riverine environments remains unclear. We used stable isotope analysis and community-wide metrics to quantify how invertebrate niches vary with environmental changes along a large subtropical river in China. Eight niche metrics, which had higher values in the wet than in the dry season, increased from headwaters to the middle river and decreased sharply near the estuarine industrial zones. The δ13C value of > - 23.8‰, which indicated consumption of epilithic diatoms, separated the invertebrates between the upper and mid-lower reaches. The δ15N values > 9.4‰ identified site-specific nitrogen sources from manure (e.g., animal effluent) and domestic sewage in agricultural area. The output of mixing models showed a downstream shift in carbon utilization by invertebrates from autochthonous periphyton and submerged hydrophytes to allochthonous C3 plants. Principle component (PC) and cluster analysis decomposed and grouped 40 environmental variables into 4 PCs that explained 84.5% of the total variance. Hierarchical partitioning revealed that the second and first PCs, which were driven mainly by biological indicators and habitat characteristics, had the highest explanatory power for niche ranges and areas (e.g., Bayesian ellipse), respectively. Our results suggest that reducing anthropogenic pressures (e.g., habitat loss and water pollution) on river ecosystems through measures, such as protecting diatom-dominated biofilms in riffles and controlling nitrogen loading in rural regions, may produce the greatest impact for river management. Graphical abstract.


Subject(s)
Ecosystem , Water Pollutants, Chemical/analysis , Animals , Bayes Theorem , China , Environmental Monitoring , Invertebrates , Nitrogen Isotopes/analysis
7.
Water Res ; 170: 115302, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31751894

ABSTRACT

Biological pump is important to control the fate and distribution of organic contaminants, particularly in temperate and cold oligotrophic waters. However, it remains largely unknown how factors affect the long-term occurrence and fate of ionogenic organic compounds in subtropical eutrophic waters. The present study aimed to assess biogeochemical and physical factors affecting the annual occurrence, bioaccumulation, and trophic transfer of 14 antibiotics through planktonic food webs in the Pearl River, a large subtropical eutrophic river in China. This was done by carrying out 1-year simultaneous field observations of antibiotic concentrations in five water column compartments and assessing the variability of bioconcentration (BCF), bioaccumulation (BAF), and biomagnification (BMF) factors, which were influenced by plankton biomass, pH and temperature of water columns. The annual mean antibiotic concentration per site ranged from 1014.66 ±â€¯535.66 ng L-1 to 1464.63 ±â€¯1075.91 ng L-1, and was positively correlated with phytoplankton biomass, but independent of the proximity of the sites to urban areas. Antibiotic occurrences in both phytoplankton and zooplankton were greatly influenced by a biodilution effect. The annual occurrence of antibiotics in the water column was modulated by biological pumps as well as their equilibrium partitioning, and indirectly influenced of eutrophication with pH increased with phytoplankton biomass and phytoplankton life cycling. BAF of antibiotics by plankton had biphasic correlations with temperature (n = 150, R2 = 0.17-0.60, p < 0.001) and decreased with plankton biomass (n = 105-147, R2 = 0.10-0.22, p < 0.001). The trophic transfer of antibiotics from phytoplankton to zooplankton (BMFs) were positively correlated with both phytoplankton biomass (n = 30, R2 = 0.58, p < 0.001) and temperature (n = 132-150, R2 = 0.12-0.43, p < 0.001). Mean BMFs of ciprofloxacin, lomefloxacin, ofloxacin, oxytetracycline, and tetracycline ranged between 0.18 and 2.25, implying these chemicals can undergo biomagnification along planktonic food webs. The present research demonstrates the important role of biogeochemical and physical factors in the environmental fate of antibiotics at large spatiotemporal scales.


Subject(s)
Food Chain , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents , Bioaccumulation , China , Environmental Monitoring , Lakes , Phytoplankton , Plankton , Rivers , Zooplankton
8.
Sci Total Environ ; 706: 135955, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31855648

ABSTRACT

Constructed wetlands (CWs) have been used to remove organic pollutants including antibiotics based on the roles of plants and microbial communities, but how rhizosphere and bulk substrate-associated microbiomes respond to antibiotics during biodegradation have seldom been researched. The effects of sulfonamides (SAs) on the microbiome composition in different compartments, namely rhizosphere, near rhizosphere and bulk substrate, in CWs planted with either Cyperus alternifolius, Cyperus papyrus or Juncus effuses were evaluated using specially designed rhizoboxes and 16S rRNA gene high-throughput sequencing. Results revealed that wastewater-borne SAs significantly reduced the microbial biodiversity in CWs, and inhibited the functional bacterial groups related to sulphur and nitrogen cycles. On the contrary, SAs significantly enriched methylotrophs with potential to initially biodegrade SAs, such as Methylosinus, Methylotenera, Methylocaldum and Methylomonas, and such enrichment was more significant in rhizosphere than in bulk substrate. The network analysis indicated that a more complex network in bulk substrate was more fragile to SA stress. The presence of wetland plants significantly influenced the bacterial community structure in CWs, but in the same compartment, the difference among the three plants species was not obvious. Wetland plants ensured the stability of rhizosphere microorganisms and increased their ability to tolerate SA stress. The present study enhances our understanding of the importance of plant-bacteria interactions in CWs and responses of substrate microbiome to antibiotics.


Subject(s)
Microbiota , Rhizosphere , Wetlands , Biodegradation, Environmental , RNA, Ribosomal, 16S , Sulfonamides , Waste Disposal, Fluid , Wastewater
9.
Environ Pollut ; 247: 999-1008, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30823355

ABSTRACT

Endocrine disrupting compounds (EDCs) are becoming an increasing concern regarding bioaccumulation in aquatic biota. However, the effects of regional pollution levels and specific feeding habits on the bioaccumulation of EDCs in fish are rarely reported. 4-Nonylphenol (4-NP), bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), triclocarban (TCC) and triclosan (TCS) were determined in abiotic compartments [water, sediment, suspended particulate matter (SPM)] and fish with different feeding habits along the Pearl River, China. EDCs in abiotic compartments exhibited significant (p < 0.05) spatial variations, forming five zones clustered based on site-specific EDC concentrations. 4-NP was the dominant compound, contributing 58-98% of the EDCs in fish, followed by BPA (<41%), 4-t-OP (<13%), and TCC and TCS (<4.7%). The concentrations of 4-NP and 4-t-OP, BPA, and TCC and TCS were the highest in brackish carnivorous, planktivorous, and detritivorous fish, respectively. The bioaccumulation factors (BAFs) showed that 4-NP accumulated (BAF > 5000) in all fish except for suck-feeding detritivores, while 4-t-OP and TCC accumulated in filter-feeding planktivores. The concentration of 4-NP in carnivores was significantly higher than that in detritivores, indicating the potential biomagnification of 4-NP along food chains. EDCs in sediment and SPM and those in water were most positively correlated with those in detritivores and planktivores, respectively, suggesting the potential of fish with these two feeding habits to act as bioindicators of EDC pollutants.


Subject(s)
Endocrine Disruptors/analysis , Environmental Monitoring/methods , Fishes , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , China
10.
Sci Total Environ ; 655: 1301-1310, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30577122

ABSTRACT

Antibiotics are widely used in humans and animals, but their presence in environmental matrices after use is of great concern. Distribution behavior of antibiotics in natural water-sediment systems is influenced by sediment properties, but how these properties, such as surface area, affect their distribution between water and sediment phases remains unclear. The concentrations of antibiotics also vary both spatially and temporally. In this study, a solid/liquid distribution coefficient Kd(pre) was proposed and evaluated in 12 quantitative predicting models based on aquatic field data compared with a bulk coefficient Kd. Results confirmed by the occurrence pattern, concentration levels and spatiotemporal distributions indicated that the characteristics of antibiotics pollution in rural northwestern Guangzhou were generally consistent with previous investigations, suggesting that this investigation was representative of the present aquatic pollution status of antibiotics. The median concentrations were <100 ng·L-1 and 220 ng·g-1 (d.w.) in the water and sediments, respectively. The most pronounced high concentrations of total antibiotic residue found were 778.0 ng·L-1 for sulfonamides (SAs) in water and 1596.9 ng·g-1 (d.w.) for fluoroquinolones (FQs) in sediments at site 13 in December of 2016, probably due to its dense population, high frequency of antibiotic use and low water flow. Moreover, 12 quantitative models were established with a high level of robustness and ability to spatiotemporally predict the Kd for each of the 12 antibiotics. The models revealed that pH, organic matter and specific surface area of sediments played significant roles in influencing the adsorption of SAs, FQs, tetracyclines (TCs) and (macrolides) MLs. Our findings provide insights into the effects of physicochemical properties on distribution of antibiotics, predicting their fate and transport, as well as assessments of exposure and risk of these emerging pollutants to aquatic ecosystems.


Subject(s)
Anti-Bacterial Agents/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Adsorption , China , Models, Theoretical
11.
Huan Jing Ke Xue ; 39(3): 1053-1064, 2018 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-29965449

ABSTRACT

This study aimed to investigate the occurrence and spatio-temporal distribution of 4-tert-octylphenol (4-t-OP), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), 17ß-estradiol (E2), and bisphenol-A (BPA) as endocrine disrupting chemicals (EDCs) in the water of the Liuxi River and to evaluate the risks for estrogenic activity. The results showed that EDCs had been detected at the 14 monitoring sites and the total concentration ranged from 26.07 ng·L-1 to 7109.5 ng·L-1, with the highest contribution rate coming from 4-NP (78.62%), followed by BPA (11.91%), and the other four EDCs (≤ 4.92%). On a spatial and temporal scale, the EDC contents increased longitudinally from upstream to downstream, especially in the heavily-polluted Baiyun section where the water quality was lower than level Ⅴ. The EDC contents in the tributaries were much higher than those in the main channels. Influenced by the monsoon precipitation, the contents of 4-NP, 4-t-OP, and total EDCs in the rainy season were significantly (P<0.05) higher than those in the dry season, while the seasonal changes of E1 and E2 followed the opposite tendency. A Pearson correlation analysis showed that DO was significantly negatively correlated with all the EDCs, suggesting that the EDCs and reductive organic pollutants might coexist. As TN, TP, NH4+-N, permanganate index, and EC were significantly positively correlated with E1, E2, BPA, and TCS but not obviously correlated with 4-NP (P>0.05), we presumed that the pollution source of E1, E2, BPA, and TCS might be the same with nitrogen and phosphorus nutrition, originating from the point source emission of the domestic sewage, industrial, and agricultural wastewater. In contrast, 4-NP and 4-t-OP more likely originated from the non-point source pollution from agriculture. RDA results showed that the variation of the EDCs contents by season was more obvious than that in space (RDA1 56.14%>RDA2 14.20%), which was much more influenced by 4-NP in the rainy season and by BPA in the dry season. As E1, E2, and TCS were positively correlated with the Cu, Zn, cyanide, and fecal coliform, these three target compounds could be used to indicate the multiple pollution components for water quality. Compared with the worldwide reported EDC contents in waters, 4-NP, BPA, and TCS contents in the middle and lower reaches of the Liuxi River were at higher levels, while E1, E2, and 4-t-OP were at the middle and lower levels. The risk assessment for estrogenic activity showed that the RQ values in the middle and lower reaches of the Liuxi River were all greater than 1, indicating that the downstream river sections were under high risk for estrogenic activity. As a result, appropriate precautions are needed to improve environmental management.


Subject(s)
Endocrine Disruptors/analysis , Environmental Monitoring , Rivers/chemistry , Water Pollutants, Chemical/analysis , Benzhydryl Compounds , China , Estradiol , Estrone , Phenols , Spatio-Temporal Analysis , Triclosan , Wastewater
12.
Ecol Evol ; 8(23): 11467-11483, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30598749

ABSTRACT

Due to the heterogeneous distribution of resources along large rivers, understanding prey utilization by basin-scale fish assemblages remains a challenge, and thus, recognizing regional fish trophic guilds and indicator species is important. We analyzed the stomach contents of 96 fish species along the subtropical East River in China and identified 8 prey items (29 subcategories). Site-specific differences in fish diet composition (DC) revealed longitudinal shifts in utilized prey taxa, from upstream lotic to downstream semi-lentic items, and these were characterized by a decrease in the proportions of epilithic diatoms and aquatic insect larvae (Ephemeroptera and Chironomidae) accompanied by an increase in bivalves (Corbicula and Limnoperna), shrimps and fishes, and organic sediments. The relative prey consumption weighted by fish abundance and biomass indicated that decreasing insect consumption and increasing detritus consumption were two fundamental vectors governing fish-centered feeding pathways. Seventeen prey-oriented fish guilds that were clustered based on DC matrix determined the spatial variation in the fish trophic structure. The cumulative presence of (a) upstream guilds reliant on insects and epiphytes, (b) midstream guilds reliant on hydrophytes, molluscs, and nekton, and (c) downstream guilds reliant on detritus, annelids, and plankton resulted in a longitudinal increase in guild richness, but this continuity was interrupted near the industrialized estuary. The most abundant 28 fish species across the guilds were selected as trophic indicator species; their spatial distribution significantly (p < 0.05) explained >80% of the environmental and prey variables identified. These species signified the availability of predator-prey links in distinct habitats and the key environmental factors supporting these links. With a high contribution (>51%) of exotic species, an increase in detritivores downstream distinguishes the subtropical East River from temperate rivers. Particularly, in the disturbed lower reaches, the dominance of detritivores prevailed over the predicted increase in other feeding groups (e.g., omnivores and carnivores).

SELECTION OF CITATIONS
SEARCH DETAIL
...