Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 18(2): e0280408, 2023.
Article in English | MEDLINE | ID: mdl-36745635

ABSTRACT

More than 50% of the images captured by optical satellites are covered by clouds, which reduces the available information in the images and seriously affects the subsequent applications of satellite images. Therefore, the identification and segmentation of cloud regions come to be one of the most important problems in current satellite image processing. Due to the complexity and variability of satellite images, especially when the ground is covered with snow, the boundary information of cloud regions is difficult to be accurately identified. The fast and accurate segmentation of cloud regions is a difficult point in the current research. We propose a lightweight convolutional neural network. Firstly, channel attention is used to optimize the effective information in the feature maps as a way to improve the network's ability to extract semantic information at each scale. Then, we fuse high and low-dimensional feature maps to enhance the network's ability to obtain small-scale semantic information. In addition, the feature aggregation module automatically adjusts the input multi-level feature weights to highlight the details of different features. Finally, we design the fully connected conditional random field to solve the problem that some noise in the input image and local minima during training is passed to the output layer resulting in the loss of edge features. Experimental results show that the proposed method achieves 0.9695 and 0.8218 for overall accuracy and recall, respectively, which has higher segmentation accuracy with the shortest time consumption compared with other state-of-the-art methods.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Semantics
2.
Comput Methods Programs Biomed ; 230: 107328, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640602

ABSTRACT

OBJECTIVES: Major observational studies report that the mortality rate of acute respiratory distress syndrome (ARDS) is close to 40%. Different treatment strategies are required for each patient, according to the degree of ARDS. Early prediction of ARDS is helpful to implement targeted drug therapy and mechanical ventilation strategies for patients with different degrees of potential ARDS. In this paper, a new dynamic prediction machine learning model for ARDS incidence and severity is established and evaluated based on 28 parameters from ordinary monitors and ventilators, capable of dynamic prediction of the incidence and severity of ARDS. This new method is expected to meet the clinical practice requirements of user-friendliness and timeliness for wider application. METHODS: A total of 4738 hospitalized patients who required ICU care from 159 hospitals are employed in this study. The models are trained by standardized data from electronic medical records. There are 28 structured, continuous non-invasive parameters that are recorded every hour. Seven machine learning models using only continuous, non-invasive parameters are developed for dynamic prediction and compared with methods trained by complete parameters and the traditional risk adjustment method (i.e., oxygenation saturation index method). RESULTS: The optimal prediction performance (area under the curve) of the ARDS incidence and severity prediction models built using continuous noninvasive parameters reached0.8691 and 0.7765, respectively. In terms of mild and severe ARDS prediction, the AUC values are both above 0.85. The performance of the model using only continuous non-invasive parameters have an AUC of 0.0133 lower, in comparison with that employing a complete feature set, including continuous non-invasive parameters, demographic information, laboratory parameters and clinical natural language text. CONCLUSIONS: A machine learning method was developed in this study using only continuous non-invasive parameters for ARDS incidence and severity prediction. Because the continuous non-invasive parameters can be easily obtained from ordinary monitors and ventilators, the method presented in this study is friendly and convenient to use. It is expected to be applied in pre-hospital setting for early ARDS warning.


Subject(s)
Respiratory Distress Syndrome , Humans , Incidence , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Ventilators, Mechanical , Machine Learning , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL