Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
Add more filters










Publication year range
1.
Glob Chall ; 8(6): 2300078, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38868603

ABSTRACT

Often, H2 is produced photocatalytically at the expense of sacrificial agents. When a sacrificial agent is selectively oxidized, this allows coupling of H2 production with synthesis of value-added organic compounds. Herein, it is argued that the conversion of bioethanol into 1,1-diethoxyethane with simultaneous H2 production increases the economic viability of photocatalysis and suggests a semiconductor material that is the most relevant for this purpose.

2.
Natl Sci Rev ; 11(3): nwad330, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38312375
3.
Angew Chem Int Ed Engl ; 63(12): e202318461, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38302835

ABSTRACT

Photocatalytic selective oxidation under visible light presents a promising approach for the sustainable transformation of biomass-derived wastes. However, achieving both high conversion and excellent selectivity poses a significant challenge. In this study, two valuable trioses, glyceraldehyde and dihydroxyacetone, are produced from glycerol over Cuδ+ -decorated WO3 photocatalyst in the presence of H2 O2 . The photocatalyst exhibits a remarkable five-fold increase in the conversion rate (3.81 mmol ⋅ g-1 ⋅ h-1 ) while maintaining a high selectivity towards two trioses (46.4 % to glyceraldehyde and 32.9 % to dihydroxyacetone). Through a comprehensive analysis involving X-ray photoelectron spectroscopy measurements with and without light irradiation, electron spin resonance spectroscopy, and isotopic analysis, the critical role of Cu+ species has been explored as efficient hole acceptors. These species facilitate charge transfer, promoting glycerol oxidation by photoholes, followed by coupling with OH- , which are subsequently dehydrated to yield the desired glyceraldehyde and dihydroxyacetone.

4.
Nat Commun ; 15(1): 789, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278813

ABSTRACT

The selective oxidative dehydrogenation of ethane (ODHE) is attracting increasing attention as a method for ethylene production. Typically, thermocatalysts operating at high temperatures are needed for C-H activation in ethane. In this study, we describe a low temperature ( < 140 °C) photocatalytic route for ODHE, using O2 as the oxidant. A photocatalyst containing PdZn intermetallic nanoparticles supported on ZnO is prepared, affording an ethylene production rate of 46.4 mmol g-1 h-1 with 92.6% ethylene selectivity under 365 nm irradiation. When we employ a simulated shale gas feed, the photocatalytic ODHE system achieves nearly 20% ethane conversion while maintaining an ethylene selectivity of about 87%. The robust interface between the PdZn intermetallic nanoparticles and ZnO support plays a crucial role in ethane activation through a photo-assisted Mars-van Krevelen mechanism, followed by a rapid lattice oxygen replenishment to complete the reaction cycle. Our findings demonstrate that photocatalytic ODHE is a promising method for alkane-to-alkene conversions under mild conditions.

5.
Water Res ; 249: 120976, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38064783

ABSTRACT

The presence of estrogens in water environments has raised concerns for human health and ecosystems balance. These substances possess potent estrogenic properties, causing severe disruptions in endocrine systems and leading to reproductive and developmental problems. Unfortunately, conventional treatment methods struggle to effectively remove estrogens and mitigate their effects, necessitating technological innovation. This study investigates the effectiveness of a novel sequential photolysis-granular activated carbon (GAC) sandwich biofiltration (GSBF) system in removing estrogens (E1, E2, E3, and EE2) and improving general water quality parameters. The results indicate that combining photolysis pre-treatment with GSBF consistently achieved satisfactory performance in terms of turbidity, dissolved organic carbon (DOC), UV254, and microbial reduction, with over 77.5 %, 80.2 %, 89.7 %, and 92 % reduction, respectively. Furthermore, this approach effectively controlled the growth of microbial biomass under UV irradiation, preventing excessive head loss. To assess estrogen removal, liquid chromatography-tandem mass spectrometry (LC-MS) measured their concentrations, while bioassays determined estrogenicity. The findings demonstrate that GSBF systems, with and without photolysis installation, achieved over 96.2 % removal for estrogens when the spike concentration of each targeted compound was 10 µg L-1, successfully reducing estrogenicity (EA/EA0) to levels below 0.05. Additionally, the study evaluated the impact of different thicknesses of GAC layer filling (8 cm, 16 cm, and 24 cm) and found no significant difference (p>0.05) in estrogen and estrogenicity removal among them.


Subject(s)
Estrogens , Water Pollutants, Chemical , Humans , Estrogens/chemistry , Photolysis , Ecosystem , Water Pollutants, Chemical/chemistry , Estrone , Charcoal
6.
Nat Commun ; 14(1): 6343, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37816721

ABSTRACT

Methane activation by photocatalysis is one of the promising sustainable technologies for chemical synthesis. However, the current efficiency and stability of the process are moderate. Herein, a PdCu nanoalloy (~2.3 nm) was decorated on TiO2, which works for the efficient, stable, and selective photocatalytic oxidative coupling of methane at room temperature. A high methane conversion rate of 2480 µmol g-1 h-1 to C2 with an apparent quantum efficiency of ~8.4% has been achieved. More importantly, the photocatalyst exhibits the turnover frequency and turnover number of 116 h-1 and 12,642 with respect to PdCu, representing a record among all the photocatalytic processes (λ > 300 nm) operated at room temperature, together with a long stability of over 112 hours. The nanoalloy works as a hole acceptor, in which Pd softens and weakens C-H bond in methane and Cu decreases the adsorption energy of C2 products, leading to the high efficiency and long-time stability.

7.
ChemSusChem ; 16(22): e202300944, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37528771

ABSTRACT

Drawing inspiration from the enzyme nitrogenase in nature, researchers are increasingly delving into semiconductor photocatalytic nitrogen fixation due to its similar surface catalytic processes. Herein, we reported a facile and efficient approach to achieving the regulation of ZnO/ZnCr2 O4 photocatalysts with ZnCr-layered double hydroxide (ZnCr-LDH) as precursors. By optimizing the composition ratio of Zn/Cr in ZnCr-LDH to tune interfaces, we can achieve an enhanced nitrogen photofixation performance (an ammonia evolution rate of 31.7 µmol g-1 h-1 using pure water as a proton source) under ambient conditions. Further, photo-electrochemical measurements and transient surface photovoltage spectroscopy revealed that the enhanced photocatalytic activity can be ascribed to the effective carrier separation efficiency, originating from the abundant composite interfaces. This work further demonstrated a promising and viable strategy for the synthesis of nanocomposite photocatalysts for nitrogen photofixation and other challenging photocatalytic reactions.

8.
Nat Commun ; 14(1): 4431, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37481611

ABSTRACT

Phenol is one of the most important fine chemical intermediates in the synthesis of plastics and drugs with a market size of ca. $30b1 and the commercial production is via a two-step selective oxidation of benzene, requiring high energy input (high temperature and high pressure) in the presence of a corrosive acidic medium, and causing serious environmental issues2-5. Here we present a four-phase interface strategy with well-designed Pd@Cu nanoarchitecture decorated TiO2 as a catalyst in a suspension system. The optimised catalyst leads to a turnover number of 16,000-100,000 for phenol generation with respect to the active sites and an excellent selectivity of ca. 93%. Such unprecedented results are attributed to the efficient activation of benzene by the atomically Cu coated Pd nanoarchitecture, enhanced charge separation, and an oxidant-lean environment. The rational design of catalyst and reaction system provides a green pathway for the selective conversion of symmetric organic molecules.

9.
Angew Chem Int Ed Engl ; 62(43): e202307907, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37515455

ABSTRACT

Carbon-carbon (C-C) coupling of organic halides has been successfully achieved in homogeneous catalysis, while the limitation, e.g., the dependence on rare noble metals, complexity of the metal-ligand catalylst and the poor catalyst stability and recyclability, needs to be tackled for a green process. The past few years have witnessed heterogeneous photocatalysis as a green and novel method for organic synthesis processes. However, the study on C-C coupling of chloride substrates is rare due to the extremely high bond energy of C-Cl bond (327 kJ mol-1 ). Here, we report a robust heterogeneous photocatalyst (Cu/ZnO) to drive the homo-coupling of benzyl chloride with high efficiency, which achieves an unprecedented high selectivity of bibenzyl (93 %) and yield rate of 92 % at room temperature. Moreover, this photocatalytic process has been validated for C-C coupling of 10 benzylic chlorides all with high yields. In addition, the excellent stability has been observed for 8 cycles of reactions. With detailed characterization and DFT calculation, the high selectivity is attributed to the enhanced adsorption of reactants, stabilization of intermediates (benzyl radicals) for the selective coupling by the Cu loading and the moderate oxidation ability of the ZnO support, besides the promoted charge separation and transfer by Cu species.

10.
ACS Catal ; 13(13): 9113-9124, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37441235

ABSTRACT

The stoichiometric water splitting using a solar-driven Z-scheme approach is an emerging field of interest to address the increasing renewable energy demand and environmental concerns. So far, the reported Z-scheme must comprise two populations of photocatalysts. In the present work, only tungsten oxides are used to construct a robust Z-scheme system for complete visible-driven water splitting in both neutral and alkaline solutions, where sodium tungsten oxide bronze (Na0.56WO3-x) is used as a H2 evolution photocatalyst and two-dimensional (2D) tungsten trioxide (WO3) nanosheets as an O2 evolution photocatalyst. This system efficiently produces H2 (14 µmol h-1) and O2 (6.9 µmol h-1) at an ideal molar ratio of 2:1 in an aqueous solution driven by light, resulting in a remarkably high apparent quantum yield of 6.06% at 420 nm under neutral conditions. This exceptional selective H2 and O2 production is due to the preferential adsorption of iodide (I-) on Na0.56WO3-x and iodate (IO3-) on WO3, which is evidenced by both experiments and density functional theory calculation. The present liquid Z-scheme in the presence of efficient shuttle molecules promises a separated H2 and O2 evolution by applying a dual-bed particle suspension system, thus a safe photochemical process.

11.
Nat Commun ; 14(1): 2690, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165020

ABSTRACT

Direct solar-driven methane (CH4) reforming is highly desirable but challenging, particularly to achieve a value-added product with high selectivity. Here, we identify a synergistic ensemble effect of atomically dispersed copper (Cu) species and partially reduced tungsten (Wδ+), stabilised over an oxygen-vacancy-rich WO3, which enables exceptional photocatalytic CH4 conversion to formaldehyde (HCHO) under visible light, leading to nearly 100% selectivity, a very high yield of 4979.0 µmol·g-1 within 2 h, and the normalised mass activity of 8.5 × 106 µmol·g-1Cu·h-1 of HCHO at ambient temperature. In-situ EPR and XPS analyses indicate that the Cu species serve as the electron acceptor, promoting the photo-induced electron transfer from the conduction band to O2, generating reactive •OOH radicals. In parallel, the adjacent Wδ+ species act as the hole acceptor and the preferred adsorption and activation site of H2O to produce hydroxyl radicals (•OH), and thus activate CH4 to methyl radicals (•CH3). The synergy of the adjacent dual active sites boosts the overall efficiency and selectivity of the conversion process.

12.
Nat Mater ; 22(5): 619-626, 2023 May.
Article in English | MEDLINE | ID: mdl-37037960

ABSTRACT

Methanol with 12.5 wt% H2 content is widely considered a liquid hydrogen medium. Taking into account water with 11.1 wt% H2 content, H2 synthesis from the mixture of water and methanol is a promising method for on-demand hydrogen production. We demonstrate an atomic-level catalyst design strategy using the synergy between single atoms and nanodots for H2 production. The PtCu-TiO2 sandwich photocatalyst achieves a remarkable H2 formation rate (2,383.9 µmol h-1) with a high apparent quantum efficiency (99.2%). Furthermore, the oxidation product is a high-value chemical formaldehyde with 98.6% selectivity instead of CO2, leading to a nearly zero-carbon-emission process. Detailed investigations indicate a dual role of the copper atoms: an electron acceptor to facilitate photoelectron transfer to Pt, and a hole acceptor for the selective oxidation of methanol to formaldehyde, thus avoiding over-oxidation to CO2. The synergy between Pt nanodots and Cu single atoms together reduces the activation energy of this process to 13.2 kJ mol-1.

13.
Adv Mater ; 35(21): e2300064, 2023 May.
Article in English | MEDLINE | ID: mdl-36872578

ABSTRACT

Solar-driven CO2 reduction by water with a Z-scheme heterojunction affords an avenue to access energy storage and to alleviate greenhouse gas (GHG) emissions, yet the separation of charge carriers and the integrative regulation of water oxidation and CO2 activation sites remain challenging. Here, a BiVO4 /g-C3 N4 (BVO/CN) Z-scheme heterojunction as such a prototype is constructed by spatially separated dual sites with CoOx clusters and imidazolium ionic liquids (IL) toward CO2 photoreduction. The optimized CoOx -BVO/CN-IL delivers an ≈80-fold CO production rate without H2 evolution compared with urea-C3 N4 counterpart, together with nearly stoichiometric O2 gas produced. Experimental results and DFT calculations unveil the cascade Z-scheme charge transfer and subsequently the prominent redox co-catalysis by CoOx and IL for holes-H2 O oxidation and electrons-CO2 reduction, respectively. Moreover, in situ µs-transient absorption spectra clearly show the function of each cocatalyst and quantitatively reveal that the resulting CoOx -BVO/CN-IL reaches up to the electron transfer efficiency of 36.4% for CO2 reduction, far beyond those for BVO/CN (4.0%) and urea-CN (0.8%), underlining an exceptional synergy of dual reaction sites engineering. This work provides deep insights and guidelines for the rational design of highly efficient Z-scheme heterojunctions with precise redox catalytic sites toward solar fuel production.

14.
Nat Commun ; 14(1): 1457, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36928357

ABSTRACT

Photocatalytic CO2 conversion promises an ideal route to store solar energy into chemical bonds. However, sluggish electron kinetics and unfavorable product selectivity remain unresolved challenges. Here, an ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate, and borate-anchored Co single atoms were separately loaded on ultrathin g-C3N4 nanosheets. The optimized nanocomposite photocatalyst produces CO and CH4 from CO2 and water under UV-vis light irradiation, exhibiting a 42-fold photoactivity enhancement compared with g-C3N4 and nearly 100% selectivity towards CO2 reduction. Experimental and theoretical results reveal that the ionic liquid extracts electrons and facilitates CO2 reduction, whereas Co single atoms trap holes and catalyze water oxidation. More importantly, the maximum electron transfer efficiency for CO2 photoreduction, as measured with in-situ µs-transient absorption spectroscopy, is found to be 35.3%, owing to the combined effect of the ionic liquid and Co single atoms. This work offers a feasible strategy for efficiently converting CO2 to valuable chemicals.

15.
ACS Catal ; 13(6): 3768-3774, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36970465

ABSTRACT

Oxidation of methane into valuable chemicals, such as C2+ molecules, has been long sought after but the dilemma between high yield and high selectivity of desired products remains. Herein, methane is upgraded through the photocatalytic oxidative coupling of methane (OCM) over a ternary Ag-AgBr/TiO2 catalyst in a pressurized flow reactor. The ethane yield of 35.4 µmol/h with a high C2+ selectivity of 79% has been obtained under 6 bar pressure. These are much better than most of the previous benchmark performance in photocatalytic OCM processes. These results are attributed to the synergy between Ag and AgBr, where Ag serves as an electron acceptor and promotes the charge transfer and AgBr forms a heterostructure with TiO2 not only to facilitate charge separation but also to avoid the overoxidation process. This work thus demonstrates an efficient strategy for photocatalytic methane conversion by both the rational design of the catalyst for the high selectivity and reactor engineering for the high conversion.

16.
Adv Mater ; 35(16): e2209646, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36721913

ABSTRACT

Selective CC cleavage of the biomass derivative glycerol under mild conditions is recognized as a promising yet challenging synthesis route to produce value-added chemicals. Here, a highly selective catalyst for the transformation of glycerol to the high-value product glycolaldehyde is presented, which is composed of nickel single atoms confined to the surface of titanium dioxide. Driven by light, the catalyst operates under ambient conditions using air as a green oxidant. The optimized catalyst shows a selectivity of over 60% to glycolaldehyde, resulting in 1058 µmol gCat -1  h-1 production rate, and ≈3 times higher turnover number than NiOx -nanoparticle-decorated TiO2 photocatalyst. Diverse operando and in situ spectroscopies unveil the unique function of the Ni single atom, which can significantly promote oxygen adsorption, work as an electron sink, and accelerate the production of superoxide radicals, thereby improving the selectivity toward glycolaldehyde over other by-products.

17.
J Phys Chem C Nanomater Interfaces ; 127(3): 1388-1396, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36721769

ABSTRACT

A series of monometallic and bimetallic cocatalyst(s), comprising FeO x , CuO x , CoO x , FeO x -CuO x , and FeO x -CoO x loaded TiO2 catalysts prepared by the surface impregnation method, were investigated for the photocatalytic mineralization of the widely used four herbicides: 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It was found that FeO x -CoO x /TiO2 showed the highest photocatalytic efficiency toward mineralization of selected herbicides. FeO x -CoO x /TiO2 achieves 92% TOC removal in 180 min, representing nearly three time activity of the benchmark PC50 TiO2. From XPS analysis, FeOOH, CuO, and CoO were determined to be loaded onto the TiO2 surface. The outstanding photocatalytic performance of the optimized FeO x -CoO x /TiO2 sample for herbicides mineralization is due to an increased charge separation and enhanced hydroxyl radicals production monitored by diverse spectroscopies. Based on the proposed charge transfer mechanism, FeO x -CoO x cocatalyst species accelerate the transfer of photogenerated holes on TiO2, thus facilitating hydroxyl radicals production.

18.
J Am Chem Soc ; 145(3): 1686-1695, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36631927

ABSTRACT

Single-atom catalysts (SACs) on hematite photoanodes are efficient cocatalysts to boost photoelectrochemical performance. They feature high atom utilization, remarkable activity, and distinct active sites. However, the specific role of SACs on hematite photoanodes is not fully understood yet: Do SACs behave as a catalytic site or as a spectator? By combining spectroscopic experiments and computer simulations, we demonstrate that single-atom iridium (sIr) catalysts on hematite (α-Fe2O3/sIr) photoanodes act as a true catalyst by trapping holes from hematite and providing active sites for the water oxidation reaction. In situ transient absorption spectroscopy showed a reduced number of holes and shortened hole lifetime in the presence of sIr. This was particularly evident on the second timescale, indicative of fast hole transfer and depletion toward water oxidation. Intensity-modulated photocurrent spectroscopy evidenced a faster hole transfer at the α-Fe2O3/sIr/electrolyte interface compared to that at bare α-Fe2O3. Density functional theory calculations revealed the mechanism for water oxidation using sIr as a catalytic center to be the preferred pathway as it displayed a lower onset potential than the Fe sites. X-ray photoelectron spectroscopy demonstrated that sIr introduced a mid-gap of 4d state, key to the fast hole transfer and hole depletion. These combined results provide new insights into the processes controlling solar water oxidation and the role of SACs in enhancing the catalytic performance of semiconductors in photo-assisted reactions.

19.
J Am Chem Soc ; 145(3): 1759-1768, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36607337

ABSTRACT

Integrating different reaction sites offers new prospects to address the difficulties in single-atom catalysis, but the precise regulation of active sites at the atomic level remains challenging. Here, we demonstrate a sodium-directed photon-induced assembly (SPA) strategy for boosting the atomic utilization efficiency of single-atom catalysts (SACs) by constructing multifarious Au sites on TiO2 substrate. Na+ was employed as the crucial cement to direct Au single atoms onto TiO2, while the light-induced electron transfer from excited TiO2 to Au(Na+) ensembles contributed to the self-assembly formation of Au nanoclusters. The synergism between plasmonic near-field and Schottky junction enabled the cascade electron transfer for charge separation, which was further enhanced by oxygen vacancies in TiO2. Our dual-site photocatalysts exhibited a nearly 2 orders of magnitude improvement in the hydrogen evolution activity under simulated solar light, with a striking turnover frequency (TOF) value of 1533 h-1 that exceeded other Au/TiO2-based photocatalysts reported. Our SPA strategy can be easily extended to prepare a wide range of metal-coupled nanostructures with enhanced performance for diverse catalytic reactions. Thus, this study provides a well-defined platform to extend the boundaries of SACs for multisite catalysis through harnessing metal-support interactions.

20.
Acc Mater Res ; 3(12): 1206-1219, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36583010

ABSTRACT

Photocatalytic conversion of small molecules (including H2O, CO2, N2, CH4, and benzene) into value-added chemicals or fuels (e.g., H2, NH3, C2 +, etc.) is a promising strategy to cope with both the worldwide increasing energy demand and greenhouse gas emission in both energy sectors and chemical industry, thus paving an effective way to carbon neutrality. On the other hand, compared with conventionally thermo- or electrocatalytic processes, photoactivation can convert these very stable small molecules by the unexhausted solar energy, so leading to store solar energy in chemical bonds. Thus, it can effectively reduce the reliance on the nonrenewable fossil fuels and avoid the substantial emission of hazardous gases such as CO2, NO x , and so on while producing valued-added chemicals. For example, semiconductors can absorb solar light to split H2O into H2 and O2 or convert CO2 to alcohols, which can then be used as zero or neutral carbon energy sources. Although many efforts have already been made on photocatalytic small molecule activation, the light-energy conversion efficiency is still rather moderate and the yield of aimed value-added chemicals cannot meet the requirement of large-scale application. The core for these artificial photocatalytic processes is to discover a novel photocatalyst with high efficiency, low cost, and excellent durability. Over the past two decades, the Tang group has discovered a few benchmark photocatalysts (such as dual-metal-loaded metal oxides, atomic photocatalysts, carbon-doped TiO2, and polymer heterojunctions, etc.) and investigated them for photocatalytic conversion of the above-mentioned five robust molecules into value-added chemicals or liquid fuels. Besides, advanced photocatalytic reaction systems including batch and continuous flow membrane reactors have been studied. More importantly, the underlying reaction mechanism of these processes has been thoroughly analyzed using the state-of-the-art static and time-resolved spectroscopies. In this Account, we present the group's recent research progress in search of efficient photocatalysts for these small molecules' photoactivation. First, the strategies used in the group with respect to three key factors in photocatalysis, including light harvesting, charge separation, and reactant adsorption/product desorption, are comprehensively analyzed with the aim to provide a clear strategy for efficient photocatalyst design toward small and robust molecule photoactivation under ambient conditions. The application of in situ and operando techniques on charge carrier dynamics and reaction pathway analysis used in the group are next discussed. Finally, we point out the key challenges and future research directions toward each specific small molecule's photoactivation process.

SELECTION OF CITATIONS
SEARCH DETAIL
...