Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancer Lett ; 529: 53-69, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34979166

ABSTRACT

Dynamic miRNA alteration is known to occur in colitis-associated colon cancer (CAC), while the molecular mechanisms underpinning how miRNAs modulate the development from chronic inflammation to CAC is lacking. For the first time, we constructed knockout (KO) mice for individual miR-148/152 family members and entire miR-148/152 family. Based on these KO mice, we conduct the first comprehensive analysis of miR-148/152 family, demonstrating that deficiency of any member of miR-148/152 family aggravate colitis and CAC. Loss of individual miR-148/152 family members or full-family enhance MMP10 and MMP13 expression, causing disruption of intestinal barrier and cleaving pro-TNF-α into bioactive TNF-α fragments to activate NF-κB signaling, thereby aggravating colitis. Individual and full-family deletion also increase accumulation of IKKα and IKKß, resulting in further hyperactivation of NF-κB signaling, exacerbating colitis and CAC. Moreover, blocking NF-κB signaling exerts a restorative effect on colitis and CAC models only in KO mice. Taken together, these findings demonstrate deleting the full miR-148/152 family or individual members exhibit similar effects in colitis and CAC. Mechanically, miR-148/152 family members deficiency in mice elevates MMP10 and MMP13 to accelerate colitis and CAC via disrupting intestinal barrier function and activating NF-κB signaling, suggesting a potential therapeutic strategy for colitis and CAC.


Subject(s)
Colitis/etiology , Colonic Neoplasms/etiology , Intestinal Mucosa/metabolism , Matrix Metalloproteinase 10/metabolism , Matrix Metalloproteinase 13/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Immunohistochemistry , Intestinal Mucosa/pathology , Matrix Metalloproteinase 10/genetics , Matrix Metalloproteinase 13/genetics , Mice , Mice, Knockout , Signal Transduction
2.
Chin Med J (Engl) ; 134(11): 1345-1355, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33883408

ABSTRACT

BACKGROUND: Although increasing abnormal expression of circular RNAs (circRNAs) has been revealed in various cancers, there were a small number of studies about circRNAs in gastric cancer (GC). Here, we explored the expression and function of a novel circRNA, circ_0049447, in GC. METHODS: A total of 80 GC tissues and non-tumorous tissues were collected from the First Affiliated Hospital of China Medical University. And all cells were cultured with 10% fetal bovine serum and incubated at 37°C and 5% CO2. The expression of circ_0049447 was quantified by real-time polymerase chain reaction. The biological function of circ_0049447 on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) was evaluated by cell counting kit-8 (CCK-8), colony formation assay, transwell migration and invasion assay, and Western blotting. Luciferase report assay was used to verify the direct binding between circ_0049447 and predicted microRNA (miRNA). Furthermore, a xenograft mouse model was used to validate the function of circ_0049447 in vivo. RESULTS: We demonstrated that circ_0049447 was downregulated in GC (P < 0.001). The area under the receiver operating characteristic curve reached 0.838, while sensitivity was 82.3% and specificity was 77.2%. CCK-8 and colony formation assay showed that overexpression of circ_0049447 could inhibit the proliferation (P < 0.05). Transwell migration and invasion assay showed upregulated circ_0049447 could impede migration in GC cells (P < 0.05). In addition, overexpression of circ_0049447 could impede GC cell EMT. Upregulation of miR-324-5p in GC specimens and direct binding between miR-324-5p with circ_0049447 proven by luciferase reporter assay indicated that circ_0049447 may inhibit GC by sponging certain miRNA. CONCLUSION: Circ_0049447 acts as a tumor suppressor in GC through reducing proliferation, migration, invasion, and EMT, and it is a promising biomarker for diagnosis.


Subject(s)
Stomach Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation/genetics , China , Epithelial-Mesenchymal Transition/genetics , Mice , Stomach Neoplasms/genetics
3.
Gastroenterology ; 160(1): 260-271.e10, 2021 01.
Article in English | MEDLINE | ID: mdl-32956680

ABSTRACT

BACKGROUND AND AIMS: In stomach, metaplasia can arise from differentiated chief cells that become mitotic via paligenosis, a stepwise program. In paligenosis, mitosis initiation requires reactivation of the cellular energy hub mTORC1 after initial mTORC1 suppression by DNA damage induced transcript 4 (DDIT4 aka REDD1). Here, we use DDIT4-deficient mice and human cells to study how metaplasia increases tumorigenesis risk. METHODS: A tissue microarray of human gastric tissue specimens was analyzed by immunohistochemistry for DDIT4. C57BL/6 mice were administered combinations of intraperitoneal injections of high-dose tamoxifen (TAM) to induce spasmolytic polypeptide-expressing metaplasia (SPEM) and rapamycin to block mTORC1 activity, and N-methyl-N-nitrosourea (MNU) in drinking water to induce spontaneous gastric tumors. Stomachs were analyzed for proliferation, DNA damage, and tumor formation. CRISPR/Cas9-generated DDIT4-/- and control human gastric cells were analyzed for growth in vitro and in xenografts with and without 5-fluorouracil (5-FU) treatment. RESULTS: DDIT4 was expressed in normal gastric chief cells in mice and humans and decreased as chief cells became metaplastic. Paligenotic Ddit4-/- chief cells maintained constitutively high mTORC1, causing increased mitosis of metaplastic cells despite DNA damage. Lower DDIT4 expression correlated with longer survival of patients with gastric cancer. 5-FU-treated DDIT4-/- human gastric epithelial cells had significantly increased cells entering mitosis despite DNA damage and increased proliferation in vitro and in xenografts. MNU-treated Ddit4-/- mice had increased spontaneous tumorigenesis after multiple rounds of paligenosis induced by TAM. CONCLUSIONS: During injury-induced metaplastic proliferation, failure of licensing mTORC1 reactivation correlates with increased proliferation of cells harboring DNA damage, as well as increased tumor formation and growth in mice and humans.


Subject(s)
Chief Cells, Gastric/pathology , Metaplasia/etiology , Metaplasia/pathology , Transcription Factors/physiology , Animals , Carcinogenesis , Cell Culture Techniques , Cell Proliferation , Humans , Mice , Mice, Inbred C57BL
4.
J Clin Lab Anal ; 33(9): e22986, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31343781

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) participate in the carcinogenesis of many different cancers. This study aimed to detect expression of lncRNA CTA-941F9.9 in colorectal cancer tissues compared with matched nontumorous adjacent tissues (NATs). Moreover, we investigated whether this molecule is able to influence carcinogenesis in colorectal cancer (CRC). METHODS: Colorectal cancer tissues and NATs from two cohorts of patients were examined. Quantitative PCR was performed to quantify levels of CTA-941F9.9 expression in these samples. The association between CTA-941F9.9 expression and clinicopathological features, including receiver operating characteristic (ROC) curves, was also analyzed to evaluate the diagnostic value of CTA-941F9.9 in CRC. Potential effects of lncRNA CTA-941F9.9 on CRC cells were assessed via autophagy, transwell assay, CCK8 assays, and flow cytometry. RESULTS: Our experimental results showed lncRNA CTA-941F9.9 to be significantly downregulated in CRC tissues in both cohorts, with areas under the ROC curve (AUC) of 0.802 and 0.876. However, no significant correlations between CTA-941F9.9 expression levels and clinicopathological characteristics or patient outcomes were observed. We also found that CTA-941F9.9 promotes autophagy in CRC cell lines but no significant function of CTA-941F9.9 in regulating cancer cell proliferation or migration. CONCLUSIONS: LncRNA CTA-941F9.9 is frequently downregulated in CRC compared with NATs and might play an important role in CRC carcinogenesis.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/metabolism , Adult , Aged , Aged, 80 and over , Apoptosis/genetics , Autophagy/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cohort Studies , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , RNA, Long Noncoding/genetics , ROC Curve , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...