Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 25(5): 2953-2964, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38652682

ABSTRACT

Endoscopic submucosal dissection (ESD) is an effective method for resecting early-stage tumors in the digestive system. To achieve a low injection pressure of the injected fluid and continuous elevation of the mucosa following injection during the ESD technique, we introduced an innovative injectable sodium-alginate-based drug-loaded microsphere (Cipro-ThSA) for ESD surgery, which was generated through an emulsion reaction involving cysteine-modified sodium alginate (ThSA) and ciprofloxacin. Cipro-ThSA microspheres exhibited notable adhesiveness, antioxidant activity, and antimicrobial properties, providing a certain level of postoperative wound protection. In vitro cell assays confirmed the decent biocompatibility of the material. Lastly, according to animal experiments involving submucosal elevation of porcine colons, Cipro-ThSA microspheres ensure surgically removable lift height while maintaining the mucosa for approximately 246% longer than saline, which could effectively reduce surgical risks while providing sufficient time for operation. Consequently, the Cipro-ThSA microsphere holds great promise as a novel submucosal injection material, in terms of enhancing the operational safety and effectiveness of ESD surgery.


Subject(s)
Alginates , Endoscopic Mucosal Resection , Microspheres , Alginates/chemistry , Animals , Swine , Endoscopic Mucosal Resection/methods , Humans , Ciprofloxacin/administration & dosage , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Cysteine/chemistry
2.
J Biomed Mater Res A ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501727

ABSTRACT

Chronic inflammation at diabetic wound sites results in the uncontrolled accumulation of pro-inflammatory factors and reactive oxygen species (ROS), which impedes cell proliferation and delays wound healing. To promote the healing of diabetic wounds, chitosan/gelatin hydrogels containing ceria nanoparticles (CNPs) of various sizes were created in the current study. CNPs' efficacy in removing O 2 • - $$ {\mathrm{O}}_2^{\bullet -} $$ , •OH, and H2 O2 was demonstrated, and the scavenging ability of CNPs of varying sizes was compared. The in vitro experiments demonstrated that hydrogels containing CNPs could effectively protect cells from ROS-induced damage and facilitate mouse fibroblast migration. Furthermore, during the treatment of diabetic wounds in vivo, hydrogels containing CNPs exhibited anti-inflammatory activity and could reduce the expression of the pro-inflammatory factors TNF-α (above 30%), IL-6 (above 90%), and IL-1ß (above 80%), and effectively promote wound closure (above 80%) by inducing re-epithelialization, collagen deposition, and angiogenesis. In addition, the biological properties and therapeutic effects of hydrogels containing CNPs of various sizes were compared and discussed. The finding revealed that hydrogels with 4 nm CNPs exhibited more significant biological properties and had implications for diabetic wound treatment.

3.
Carbohydr Polym ; 330: 121776, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368092

ABSTRACT

The present work investigates the effects of nano-chitin with different charge, obtained by acid hydrolysis and TEMPO oxidation, on the structure and properties of borax crosslinked polyvinyl alcohol (PVA) hydrogels. In detail, nano-chitin prepared by acid hydrolysis (ACh) is positively charged (+28.8 mV). The electrostatic attraction between ACh and borax ions leads to a maximum tensile stress of composite hydrogel (ACh/PB), 54.25 KPa, 17 times of the borax crosslinked PVA (PB). In contrast, nano-chitin prepared by TEMPO-oxidation (TCh) shows negative charge (-59.0 mV). Due to the electrostatic repulsion with borax ions, the maximum tensile stress of composite hydrogel (TCh/PB) is only 9.25 KPa, a very limit reinforcing effect. However, TCh/PB showed better self-healing efficiency (96.0 %) as well as ionic conductivity (1.25 × 10-5 S/m). The present work shows that the charge state of the nano-chitin exerts great influence on the interaction with the crosslinking agent borax, therefore, affects the structure and properties of the final PVA composite hydrogels. The results could provide important information about making full use of nano-chitin as a reinforcement by adjusting its surface charge state.

4.
Int J Biol Macromol ; 261(Pt 1): 129739, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281529

ABSTRACT

A hybrid hydrogel system (GSOHA) consisting of serotonin-grafted gelatin and oxidized hyaluronic acid (OHA) was developed in this study to efficiently control bleeding and prevent bacterial infections during surgery and trauma. The study results showed that the incorporation of serotonin successfully produced hydrogels with rapid hemostatic, antibacterial, and antioxidant properties. The GSOHA hydrogel exhibited considerably stronger tissue adhesion (15.55 ± 0.36 kPa) to porcine skin than the commercial fibrin glue (1.09 ± 0.04 kPa). In addition, the hydrogel could rapidly absorb blood cells and stimulate cell conjugation with serotonin addition. In vitro experiments using endothelial cells and erythrocytes demonstrated the excellent biocompatibility and hemocompatibility of the hydrogel. Most importantly, the GSOHA hydrogel accelerated the wound healing process in a full-thickness skin defect mice model, and the histological staining results demonstrated that GSOHA significantly promoted collagen deposition and vascularization. In conclusion, this study demonstrated the significant potential of the GSOHA hydrogel as an adhesive dressing for rapid hemostasis and wound healing.


Subject(s)
Gelatin , Hyaluronic Acid , Animals , Mice , Swine , Gelatin/pharmacology , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Serotonin/pharmacology , Endothelial Cells , Wound Healing , Anti-Bacterial Agents , Hemostasis
5.
Food Chem ; 438: 138009, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-37983991

ABSTRACT

In this work, a nontoxic crosslinking agent, citric acid (CA), was used to crosslink glycerol-plasticized SSPS films via a heat activated reaction. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results confirmed the occurrence of esterification reaction between CA and SSPS. Microstructure of the CA-crosslinked SSPS films were characterized by scanning electron microscopy, atomic force microscopy and X-ray diffraction. The water resistance, mechanical, UV-barrier, water vapor barrier, antioxidant and thermal properties of SSPS films were enhanced by CA crosslinking. The SSPS film crosslinked with 5 % CA exhibited a maximum tensile strength of 6.5 MPa and a minimum water solubility of 34.3 %. The CA-crosslinked SSPS film also presented superior antibacterial properties against Gram-positive and Gram-negative bacteria. Application test results showed that the CA-crosslinked SSPS film can effectively delay the oxidative deterioration of lard during storage, suggesting that the developed CA-crosslinked SSPS film could be a promising candidate for active food packaging.


Subject(s)
Anti-Bacterial Agents , Glycine max , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Packaging/methods , Gram-Negative Bacteria , Gram-Positive Bacteria , Polysaccharides/chemistry , Permeability
6.
Polymers (Basel) ; 15(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836057

ABSTRACT

The mesoscale components of collagen (nanofibrils, fibrils, and fiber bundles) are well organized in native tissues, resulting in superior properties and diverse functions. In this paper, we present a simple and controlled liquid exfoliation method to directly extract medium-sized collagen fibers ranging from 102 to 159 nm in diameter from bovine Achilles tendon using urea/hydrochloric acid and a deep eutectic solvent (DES). In situ observations under polarized light microscopy (POM) and molecular dynamics simulations revealed the effects of urea and GuHCl on tendon collagen. FTIR study results confirmed that these fibrils retained the typical structural characteristics of type I collagen. These shed collagen fibrils were then used as building blocks to create independent collagen membranes with good and stable mechanical properties, excellent barrier properties, and cell compatibility. A new method for collagen processing is provided in this work by using DES-assisted liquid exfoliation for constructing robust collagen membranes with mesoscale collagen fibrils as building blocks.

7.
Int J Biol Macromol ; 252: 126344, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37586621

ABSTRACT

Uncontrollable acute bleeding and wound infection pose significant challenges in emergency treatment and surgical operations. Therefore, the research and development of highly efficient antibacterial hemostatic agents are of great importance in reducing the mortality rate among patients with massive hemorrhage. In this study, we utilized hydrophobically modified chitosan (HM-CS) and gallic acid chitosan (GA-CS) to create a composite sponge (HM/GA-CS) that exhibits complementary advantages. The composite sponge combines the alkyl chain and polyphenol structure, allowing it to adsorb blood cells and plasma proteins simultaneously. This synergistic effect was confirmed through various tests, including blood cell adhesion, plasma protein barrier behavior, and in vitro hemostatic testing. Furthermore, experiments conducted on a rat liver injury model demonstrated that the composite sponge achieved rapid coagulation within 52 s, resulting in significantly lower bleeding volume compared with traditional gauze. In addition, the incorporation of GA-CS into HM-CS enhanced the antibacterial properties of the composite sponge. The antibacterial rate of the composite sponge against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached 100 % and 98.2 %, respectively. To evaluate its biocompatibility, the composite sponge underwent blood compatibility and cell activity tests, confirming its suitability. The HM/GA-CS sponge holds promising applications in managing cases of massive hemorrhage.


Subject(s)
Chitosan , Hemostatics , Humans , Rats , Animals , Hemostatics/pharmacology , Hemostatics/chemistry , Chitosan/pharmacology , Chitosan/therapeutic use , Chitosan/chemistry , Escherichia coli , Staphylococcus aureus , Hemostasis , Hemorrhage/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry
8.
Colloids Surf B Biointerfaces ; 228: 113424, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37356138

ABSTRACT

The increasing emergence of drug-resistant bacteria and bacteria-infected wounds highlights the urgent need for new kinds of antibacterial wound dressing. Herein, we reported a novel bio-adhesive and antibacterial hydrogel consisting of hydrophobically modified gelatin, oxidized konjac glucomannan, and dopamine. This kind of functional hydrogel was endowed with developed stability in a liquid environment and strong tissue adhesion, even much higher than the commercial fibrin glue to wounds. The excellent bacteria-killing efficiency of hydrophobically modified hydrogel against S. aureus and E. coli was verified, as well as the low hemolysis ratio against erythrocytes in vitro. The hydrogel also exhibited good cytocompatibility in terms of supporting cell proliferation. Most importantly, these abovementioned properties could be customized by altering the substitution degree of hydrophobic groups during manufacturing, demonstrating its great potential in biomedical fields such as tissue adhesive and wound dressing.


Subject(s)
Escherichia coli , Hydrogels , Humans , Tissue Adhesions , Hydrogels/pharmacology , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/pharmacology
10.
Int J Biol Macromol ; 242(Pt 4): 125029, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37244333

ABSTRACT

Because of the indiscriminate use of antibiotics and the increasing threat of drug-resist bacteria, there is an urgent need to develop novel antibacterial strategies to combat infected wounds. In this work, stable tricomplex molecules (PA@Fe) assembled by protocatechualdehyde (PA) and ferric iron (Fe) were successfully synthesized and then embedded in the gelatin matrix to obtain a series of Gel-PA@Fe hydrogels. The embedded PA@Fe served as a crosslinker to improve the mechanical, adhesive and antioxidant properties of hydrogels through coordination bonds (catechol-Fe) and dynamic Schiff base bonds, meanwhile acting as a photothermal agent to convert near-infrared (NIR) light into heat to kill bacteria effectively. Importantly, in vivo evaluation through an infected full-thickness skin wound mice model revealed that Gel-PA@Fe hydrogel developed collagen deposition, and accelerated reconstruction of wound closure, indicating great potential of Gel-PA@Fe hydrogel in promoting the healing process of infected full-thickness wounds.


Subject(s)
Gelatin , Wound Infection , Animals , Mice , Hydrogels/pharmacology , Antioxidants/pharmacology , Wound Healing , Catechols/pharmacology , Anti-Bacterial Agents/pharmacology , Wound Infection/drug therapy , Iron
11.
Macromol Rapid Commun ; 44(10): e2200977, 2023 May.
Article in English | MEDLINE | ID: mdl-37002780

ABSTRACT

The development of high-performance and low-cost, flexible electronic devices is a crucial prerequisite for emerging applications of energy storage, conversion, and sensing system. Collagen as the most abundant structural protein in mammals, owing to the unique amino acid composition and hierarchical structure, the conversion of collagen into collagen-derived carbon materials with different nanostructures and abundant ideal heteroatom doping through the carbonization method is expected to be a promising candidate material for electrodes of energy storage devices. The excellent mechanical flexibility of collagen and the abundant functional groups on its molecular chain that are easy to modify provide the possibility to be used as a separator material. On this basis, the ideal biocompatibility and degradability provide unique conditions for it to match the flexible substrate material of the human body for wearable electronic skin. In this review, the unique characteristics and advantages of collagen for electronic devices are first summarized. Recent progress in designing and constructing collagen-based electronic devices for future applications of electrochemical energy storage and sensing are reviewed. Finally, the challenges and prospects for collagen-based flexible electronic devices are discussed.


Subject(s)
Nanostructures , Wearable Electronic Devices , Animals , Humans , Electronics , Carbon/chemistry , Nanostructures/chemistry , Collagen , Mammals
12.
Int J Biol Macromol ; 239: 124361, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37028629

ABSTRACT

Soluble soybean polysaccharide (SSPS)-based composite films with the addition of nano zinc oxide (nZnO, 5 wt% based on SSPS) and tea tree essential oil (TTEO, 10 wt% based on SSPS) were developed by the casting method. The effect of the combination of nZnO and TTEO on the microstructure and physical, mechanical and functional properties of SSPS films was evaluated. The results showed that the SSPS/TTEO/nZnO film exhibited enhanced water vapor barrier properties, thermal stability, water resistance, surface wettability, and total color difference, and almost completely prevented ultraviolet light transmission. The addition of TTEO and nZnO had no significant effect on the tensile strength and elongation at break of the films, but decreased the percentage of light transmittance of the films at 600 nm from 85.5 % to 10.1 %. The DPPH radical scavenging activity of the films significantly increased from 46.8 % (SSPS) to 67.7 % (SSPS/TTEO/nZnO) due to the presence of TTEO. Scanning electron microscopy analysis indicated that nZnO and TTEO were evenly dispersed in the SSPS matrix. The synergistic effect of nZnO and TTEO endowed the SSPS film with excellent antibacterial activity against E. coli and S. aureus, suggesting that the SSPS/TTEO/nZnO film could be a promising material for active packaging applications.


Subject(s)
Tea Tree Oil , Zinc Oxide , Tea Tree Oil/pharmacology , Glycine max/chemistry , Trees , Food Packaging/methods , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Escherichia coli , Staphylococcus aureus , Polysaccharides/pharmacology , Polysaccharides/chemistry , Tea
13.
Chemistry ; 29(29): e202204071, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36879435

ABSTRACT

Ceria nanoparticles (CNPs) are important typical nanozymes with multiple enzyme mimetic activities, which could facilitate the oxidation of organic dyes in acidic conditions, because of the oxidase mimetic activity. Usually, the regulation of oxidase mimetic activity is focused on the adjustment of the structure, morphology, composition, surface, and other factors of nanozymes. However, the influence of the surrounding environment is not considered, which is very important during the reaction process. In this work, the oxidase mimetic activity of CNPs in buffer solutions including citric acid, acetic acid and glycine buffer solutions was investigated, with the results that carboxyl group in buffer solution could adsorb the CNPs on the surface to promote the oxidase mimetic activity. Due to the chelation with the cerium ion, the enhancement is more significant by molecules with polycarboxylic groups, and the enhancement is more efficient by carboxyl molecules in buffer solution, compared with the modification of the carboxyl groups on the surface, because of easier operation and smaller steric hindrance. From the viewpoint of increasing the oxidase mimetic activity of CNPs, the work is expected to provide references for the selection of the reaction systems to optimize the oxidase mimetic activity in bio-detection applications.


Subject(s)
Cerium , Nanoparticles , Oxidoreductases/metabolism , Nanoparticles/chemistry , Oxidation-Reduction , Cerium/chemistry , Chelating Agents
14.
Biotechnol Adv ; 63: 108099, 2023.
Article in English | MEDLINE | ID: mdl-36649798

ABSTRACT

Collagen presents a well-organized hierarchical multilevel structure. Microfibers, fibers, and fiber bundles are the aggregates of natural collagen; which achieve an ideal balance of mechanical strength and toughness at the mesoscopic scale for biological tissue. These mesostructured aggregates of collagen isolated from biological tissues retain these inherent organizational features to enable their use as building blocks for constructing new collagen materials with ideal mechanical performance, thermal and dimensional stability. This strategy is distinct from the more common bottom-up or molecular-level design and assembly approach to generating collagen materials. The present review introduces the hierarchical structure of biological collagen with a focus on mesostructural features. Isolation strategies for these collagen aggregates (CAs) are summarized. Recent progress in the use of these mesostructural components for the construction of new collagen materials with emerging applications is reviewed, including in catalysis, environmental applications, biomedicine, food packaging, electrical energy storage, and flexible sensors. Finally, challenges and prospects are assessed for controllable production of CAs as well as material designs.


Subject(s)
Collagen , Collagen/chemistry
15.
Int J Biol Macromol ; 222(Pt B): 3155-3167, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36243153

ABSTRACT

Herein, a strong and stable gelatin-based composite hydrogel was fabricated by incorporation of amino-functionalized microfibrillated cellulose (AMFC) into gelatin matrix along with genipin crosslinking. The hydrogel consists of chemical and physical crosslinks among gelatin chains and AMFC fibrils. The morphology, swelling behavior and compressive properties of the composite hydrogels were investigated. The results show that the mechanical properties and structural stability of the gelatin hydrogels were improved remarkably by the addition of AMFC due to the formation of a hybrid network structure. The composite hydrogel has a compressive strength up to 1.52 MPa at a strain of 80 %, which is 41.2 and 1.8 times higher than that of the conventional physical and genipin-crosslinked gelatin hydrogels, respectively. Moreover, the developed gelatin-based composite hydrogels reinforced with AMFC exhibit good enzymatic stability, high surface hydrophobicity, tunable swelling property and excellent biocompatibility, which are expected to have potential applications in biomedical and pharmaceutical fields.


Subject(s)
Gelatin , Hydrogels , Gelatin/chemistry , Hydrogels/chemistry , Cellulose/chemistry , Iridoids
16.
RSC Adv ; 12(12): 7506-7515, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35424668

ABSTRACT

Leather is widely used in daily necessities, such as shoes and bags. Traditional chrome tanning might produce leathers with excellent mechanical and thermal properties but gives rise to problems, such as environmental pollution. To find an ecological alternative for chrome-tanning agents, soluble soybean polysaccharide (SSPS) was oxidized by sodium periodate to yield dialdehyde soluble soybean polysaccharide (DPA). By the response surface methodology (RSM)-based optimization of the preparation process, DPA was obtained at the optimized condition at the mass ratio of 1 : 1.9, oxidation time of 0.53 h, and oxidation temperature of 20 °C, and the hydrothermal shrinkage temperature of the DPA-tanned leather reached 79 °C. The Fourier transform infrared (FT-IR) spectra and gel permeation chromatography (GPC) showed that the aldehyde group was successfully introduced, and the molecular weight was significantly reduced. The DPA-tanned leather has good collagen fiber dispersion and mechanical properties and thus is suggested to be a green tanning agent for leather making.

17.
J Biomater Appl ; 37(1): 12-22, 2022 07.
Article in English | MEDLINE | ID: mdl-35400208

ABSTRACT

In situ forming hydrogels with strong adhesive strength and antibacterial activity are of great interest to serve as tissue adhesive in fields like wound dressing and mass hemorrhage. In this study, hybrid hydrogel (GOHA) based on gelatin and oxidized hyaluronic acid was developed and endowed with excellent mechanical strength and tissue adhesion. According to our results, GOHA hydrogel exhibits a fast gelation time of around 60 s, robust compression strength of 223.43 ± 24.28 kPa, and strong adhesion of 14.33 ± 0.78 kPa to porcine skin, which is much higher than that of commercial fibrin glue (around 1.00 kPa). Meanwhile, through the loading of levofloxacin, obvious antibacterial activity can be obtained for wider applications. Notably, it would not compromise the hemocompatibility and cytocompatibility in vitro. In summary, this kind of hybrid hydrogel shows great potential as tissue adhesive in biomedical fields.


Subject(s)
Hydrogels , Tissue Adhesives , Animals , Anti-Bacterial Agents/pharmacology , Recombination, Genetic , Swine , Tissue Adhesions , Tissue Adhesives/pharmacology
18.
Waste Manag ; 143: 105-115, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35240446

ABSTRACT

Management and safe disposal of chrome-tanned leather wastes generated in leather industry are of great importance due to their potential health risks and environmental hazards. Herein, an integrated strategy was proposed for disposing of chrome-tanned leather scrap (CTLS). This method involves the separation of chromium salts from CTLS with sulfuric acid for recycling purpose, followed by pyrolysis of the acid-treated CTLS in an inert atmosphere. SEM/EDX analysis was employed to characterize the changes in composition and morphology of CTLS after acid treatment. CO2 and H2O are main pyrolysis gases of CTLS, while the acid treatment increases the relative content of aliphatic hydrocarbons and NH3 in evolved gases. The pyrolysis characteristics and kinetics of the acid-treated CTLS were investigated by thermogravimetric analysis (TGA) at three different heating rates. After 3 and 6 days of acid treatment, the average activation energy of CTLS (450.9 kJ/mol) obtained from the Flynn-Wall-Ozawa method decreased to 369.6 and 351.0 kJ/mol, respectively. It is assumed that the CTLS consists of two pseudocomponents: low-crosslinked collagen (LCol) and highly-crosslinked collagen (HCol). Using the generalized master plots method, random nucleation and nuclei growth model (An model) was found to be the most probable kinetic model for the pyrolysis process of LCol and HCol. The kinetic exponent for pseudocomponent pyrolysis varied between 3.00 and 3.90, and the pre-exponential factor ranged from 5.83 × 1012 to 2.93 × 1013 min-1. The results of the present study provide an alternative route and useful information for recycling and disposing of chrome-containing leather wastes.


Subject(s)
Pyrolysis , Sulfuric Acids , Gases , Kinetics , Thermogravimetry
19.
Macromol Biosci ; 22(5): e2100443, 2022 05.
Article in English | MEDLINE | ID: mdl-35102693

ABSTRACT

Due to the defects like long gelling time, inferior mechanical properties and weak adhesion, in situ forming hydrogels are still restricted in biomedical applications like viscera rupture and targeted therapy. To address these problems, a new kind of multi-crosslinked hydrogel (G-OKG-DA) consisting of gelatin, oxidized konjac glucomannan (OKG), and dopamine (DA) is proposed in this study. The resulting hybrid hydrogel is endowed with a short gelling time (≈3 min) and injectable capacity. According to the mechanical and adhesive tests, G-OKG-DA hydrogel shows a robust tensile strength of 23.94 kPa, as well as a higher adhesive strength (≈150 kPa) than commercial fibrin glue. In addition, an instant self-healing behavior of G-OKG-DA hydrogel can be found, which is attributed to multi-cross-linking reactions including Schiff-based dynamic covalent bonds between OKG and gelatin, oxidative polymerization of DA, and catechol-mediated chemistry like Michael addition and DA-quinone coupling. Importantly, the multi-crosslinked hydrogel will not compromise its hemocompatibility and cytocompatibility in vitro, suggesting potential applications in biomedical fields as tissue adhesive and implants.


Subject(s)
Hydrogels , Tissue Adhesives , Adhesives , Gelatin/chemistry , Gelatin/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Tensile Strength , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology
20.
Int J Biol Macromol ; 192: 169-179, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34624380

ABSTRACT

A highly hydrophobic and self-recoverable sponge was prepared with cellulose nanofibrils (CNFs), N-alkylated chitosan (NCS), and poly (vinyl alcohol) (PVA), which was then endowed with hydrophobic properties via simple thermal chemical vapor deposition (CVD). The three-dimensional (3D) interconnected microstructure of the prepared CNF/NCS/PVA sponge was found to have 96% porosity, ultra-low density (16.61-50.91 mg/cm3) and high hydrophobicity (water contact angle of 147°), which can absorb various organic solvents with an absorption capacity of 19.05-51.08 times of its original weight. Besides, the sponge could bear 80% strain and be cyclically compressed 50 times under the strain of 50%. The sponge can effectively separate oil/water mixtures and water-in-oil emulsions with high separation efficiency and fluxes. Moreover, the sponge could keep its good stability in various acidic, saline and mechanical abrasion conditions. The green preparation and good separation efficiency suggest a potential application of recyclable and versatile CNF/NCS/PVA sponges in oil/water separation.


Subject(s)
Cellulose/chemistry , Chitosan/chemistry , Hydrophobic and Hydrophilic Interactions , Nanofibers/chemistry , Oils/chemistry , Polyvinyl Alcohol/chemistry , Water/chemistry , Adsorption , Emulsions , Kinetics , Molecular Structure , Spectrum Analysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...