Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Australas J Ultrasound Med ; 26(2): 91-99, 2023 May.
Article in English | MEDLINE | ID: mdl-37252618

ABSTRACT

Objectives: Undergraduate ultrasound education is becoming increasingly important, but its expansion is limited by time, space and the availability of trained faculty. In order to validate an alternative and more accessible teaching model, our aim was to assess whether combining teleguidance and peer-assisted learning to teach ultrasound is as effective as traditional in-person methods. Methods: Peer instructors taught 47 second-year medical students ocular ultrasound via either teleguidance or traditional in-person methods. Proficiency was assessed using a multiple-choice knowledge test and objective structured clinical examination (OSCE). Confidence, overall experience, and experience with a peer instructor were measured using a 5-point Likert scale. Two one-sided t-tests were used to measure equivalency between the two groups. The null hypothesis that the two groups were not different was rejected when P < 0.05. Results: The teleguidance group performed as well as the traditional in-person group in terms of knowledge change, confidence change, OSCE time and OSCE score (p = 0.011, p = 0.006, p = 0.005 and  = 0.004, respectively, indicating the two groups are statistically equivalent). The teleguidance group rated the experience highly overall (4.06/5), but less than the traditional group (4.47/5; P = 0.448, indicating statistical difference). Peer instruction was rated 4.35/5 overall. Conclusion: Peer-instructed teleguidance was equivalent to in-person instruction with respect to knowledge change, confidence gain and OSCE performance in basic ocular ultrasound.

2.
Mol Autism ; 12(1): 36, 2021 05 16.
Article in English | MEDLINE | ID: mdl-33993884

ABSTRACT

BACKGROUND: DDX3X syndrome is a recently identified genetic disorder that accounts for 1-3% of cases of unexplained developmental delay and/or intellectual disability (ID) in females, and is associated with motor and language delays, and autism spectrum disorder (ASD). To date, the published phenotypic characterization of this syndrome has primarily relied on medical record review; in addition, the behavioral dimensions of the syndrome have not been fully explored. METHODS: We carried out multi-day, prospective, detailed phenotyping of DDX3X syndrome in 14 females and 1 male, focusing on behavioral, psychological, and neurological measures. Three participants in this cohort were previously reported with limited phenotype information and were re-evaluated for this study. We compared results against population norms and contrasted phenotypes between individuals harboring either (1) protein-truncating variants or (2) missense variants or in-frame deletions. RESULTS: Eighty percent (80%) of individuals met criteria for ID, 60% for ASD and 53% for attention-deficit/hyperactivity disorder (ADHD). Motor and language delays were common as were sensory processing abnormalities. The cohort included 5 missense, 3 intronic/splice-site, 2 nonsense, 2 frameshift, 2 in-frame deletions, and one initiation codon variant. Genotype-phenotype correlations indicated that, on average, missense variants/in-frame deletions were associated with more severe language, motor, and adaptive deficits in comparison to protein-truncating variants. LIMITATIONS: Sample size is modest, however, DDX3X syndrome is a rare and underdiagnosed disorder. CONCLUSION: This study, representing a first, prospective, detailed characterization of DDX3X syndrome, extends our understanding of the neurobehavioral phenotype. Gold-standard diagnostic approaches demonstrated high rates of ID, ASD, and ADHD. In addition, sensory deficits were observed to be a key part of the syndrome. Even with a modest sample, we observe evidence for genotype-phenotype correlations with missense variants/in-frame deletions generally associated with more severe phenotypes.


Subject(s)
Autism Spectrum Disorder , DEAD-box RNA Helicases/genetics , Language Development Disorders , Female , Humans , Male , Prospective Studies
3.
J Neurodev Disord ; 13(1): 18, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33892622

ABSTRACT

FOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Forkhead Transcription Factors , Humans , In Situ Hybridization, Fluorescence , Repressor Proteins
4.
Genes (Basel) ; 12(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33673501

ABSTRACT

Background: Activity dependent neuroprotective protein (ADNP) syndrome is one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability, however, the phenotypes remain poorly described. Here we examine the sensory reactivity phenotype in children and adolescents with ADNP syndrome. Methods: Twenty-two individuals with ADNP syndrome received comprehensive clinical evaluations including standardized observations, caregiver interviews, and questionnaires to assess sensory reactivity symptoms. Relationships between sensory symptoms and age, sex, ASD, IQ, and adaptive behavior were examined. Genotype-phenotype correlations with the recurrent p.Tyr719* variant were also explored. Results: Sensory reactivity symptoms were observed and reported in all participants. A syndrome-specific phenotype was identified, characterized by high levels of sensory seeking across tactile, auditory, and visual domains. Tactile hyporeactivity, characterized by pain insensitivity, was reported in the majority of participants. Sensory symptoms were identified across individuals regardless of age, sex, IQ, adaptive ability, genetic variant, and most importantly, ASD status. No significant differences were identified between participants with and without the recurrent p.Tyr719* variant on any sensory measure. Conclusions: Sensory reactivity symptoms are a common clinical feature of ADNP syndrome. Quantifying sensory reactivity using existing standardized measures will enhance understanding of sensory reactivity in individuals with ADNP syndrome and will aid in clinical care. The sensory domain may also represent a promising target for treatment in clinical trials.


Subject(s)
Autism Spectrum Disorder/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Mutation, Missense , Nerve Tissue Proteins/genetics , Adolescent , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/therapy , Child , Child, Preschool , Female , Humans , Intellectual Disability/physiopathology , Intellectual Disability/therapy , Male , Syndrome
5.
Am J Hum Genet ; 107(3): 555-563, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32758449

ABSTRACT

Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.


Subject(s)
Autism Spectrum Disorder/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Autism Spectrum Disorder/pathology , Child , DNA Methylation/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Epigenesis, Genetic/genetics , Female , Humans , Intellectual Disability/pathology , Male , Mutation/genetics , Neurodevelopmental Disorders/pathology , Phenotype , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...