Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Foods ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731742

ABSTRACT

Background: A diet high in purines can impair the function of the gut microbiota and disrupt purine metabolism, which is closely associated with the onset of hyperuricemia. Dietary regulation and intestinal health maintenance are key approaches for controlling uric acid (UA) levels. Investigating the impacts of fermented foods offers potential dietary interventions for managing hyperuricemia. Methods: In this study, we isolated a strain with potent UA-degrading capabilities from "Jiangshui", a fermented food product from Gansu, China. We performed strain identification and assessed its probiotic potential. Hyperuricemic quails, induced by a high-purine diet, were used to assess the UA degradation capability of strain JS-3 by measuring UA levels in serum and feces. Additionally, the UA degradation pathways were elucidated through analyses of the gut microbiome and fecal metabolomics. Results: JS-3, identified as Lacticaseibacillus paracasei, was capable of eliminating 16.11% of uric acid (UA) within 72 h, rapidly proliferating and producing acid within 12 h, and surviving in the gastrointestinal tract. Using hyperuricemic quail models, we assessed JS-3's UA degradation capacity. Two weeks after the administration of JS-3 (2 × 108 cfu/d per quail), serum uric acid (SUA) levels significantly decreased to normal levels, and renal damage in quails was markedly improved. Concurrently, feces from the JS-3 group demonstrated a significant degradation of UA, achieving up to 49% within 24 h. 16S rRNA sequencing revealed JS-3's role in gut microbiota restoration by augmenting the probiotic community (Bifidobacterium, Bacteroides unclassified_f-Lachnospiraceae, and norank_fynorank_o-Clostridia_UCG-014) and diminishing the pathogenic bacteria (Macrococus and Lactococcus). Corresponding with the rise in short-chain fatty acid (SCFA)-producing bacteria, JS-3 significantly increased SCFA levels (p < 0.05, 0.01). Additionally, JS-3 ameliorated metabolic disturbances in hyperuricemic quails, influencing 26 abnormal metabolites predominantly linked to purine, tryptophan, and bile acid metabolism, thereby enhancing UA degradation and renal protection. Conclusions: For the first time, we isolated and identified an active probiotic strain, JS-3, from the "Jiangshui" in Gansu, used for the treatment of hyperuricemia. It modulates host-microbiome interactions, impacts the metabolome, enhances intestinal UA degradation, reduces levels of SUA and fecal UA, alleviates renal damage, and effectively treats hyperuricemia without causing gastrointestinal damage. In summary, JS-3 can serve as a probiotic with potential therapeutic value for the treatment of hyperuricemia.

2.
Int J Biol Macromol ; 262(Pt 2): 130107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38350585

ABSTRACT

In developing type 3 resistant starch (RS3) from Canna edulis for use as functional food ingredients, we investigated the synthesis of C. edulis RS3 nanoparticles. Simultaneously, we explored the potential of C. edulis short-chain amylose (SCA)-based RS3 nanoparticles (RS3N) as a targeted delivery system, with a specific focus on colon targeting, yielding promising insights. Our study revealed that the degree of polymerization (DP) of C. edulis SCA, particularly the chains of DP 36- 100, exhibited a robust correlation with the particle size and physicochemical characteristics of C. edulis SCA-based RS3N. Additionally, recrystallization temperature variation (4, 25, and 45 °C) significantly influenced the self-assembly behavior of C. edulis SCA, with the preparation at 4 °C resulting in more uniform particle size distributions. In further expanding the scope of applications for C. edulis SCA-based RS3N, we harnessed the potential of Fe3O4 and curcumin (CUR) as guest molecules to assess drug encapsulation and colon-targeting capabilities. Incorporating Fe3O4 into the self-assembly system led to the production of magnetic RS3N, confirming the successful encapsulation of Fe3O4 within C. edulis SCA-based RS3N. Furthermore, in vitro experiments have demonstrated that CUR-RS3N was stable in the gastrointestinal tract and gradually released curcumin with fermentation in the colonic environment. Collectively, these findings provide invaluable insights into the intricate self-assembly behavior of C. edulis SCA with varying fine structures and recrystallization temperatures during RS3N formation. Moreover, they underscore the colon-targeted properties of C. edulis SCA-based RS3N, opening promising avenues for its application within the food industry, particularly in advanced controlled drug delivery systems.


Subject(s)
Curcumin , Nanoparticles , Zingiberales , Amylose/chemistry , Resistant Starch , Starch/chemistry , Pharmaceutical Preparations , Curcumin/chemistry , Zingiberales/chemistry , Nanoparticles/chemistry
3.
J Liposome Res ; 34(1): 124-134, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37555618

ABSTRACT

Liposomes (LPs) are a delivery system for stabilizing pharmaceuticals with limited use due to their propensity to congregate and fuse. A proposed method of addressing these problems is polymer coating. In this study, the potential of octadecylamine (ODA)-coated liposomes and carboxymethyl chitosan (CMCS/ODA-LPs) for enhancing Wacao pentacyclic triterpene saponin (WPTS) transport capacity was investigated. CMCS/ODA-LPs were produced by electrostatic adsorption and thin-film hydration. Response surface methodology (RSM) was employed to enhance the process and encapsulation efficiency (EE) for optimum drug encapsulation efficiency. The synthesized WPTS-CMCS/ODA-LPs were uniformly dispersed in a circular shape, and during 14 days of storage at 4 °C, the particle size and morphology did not significantly change. Vesicle size, zeta potential, polydispersity index (PDI), and entrapment efficiency (%) were 179.1 ± 7.31 nm, -29.6 ± 1.35 mV, 0.188 ± 0.052, and 75.62 ± 0.43, respectively. The hemolysis test revealed that WPTS-CMCS/ODA-LPs were sufficiently biocompatible. Compared to WPTS-LPs, WPTS-CMCS/ODA-LPs consistently showed a much more significant cytotoxic effect on cancer cells. Early and WPTS-CMCS/ODA-LPs-induced apoptosis resulted in almost seven times more cell death than the control. Compared to physiological pH 7.3, the pH-sensitive CMCS coupled LPs increased drug release at acidic pH 6.5. These findings suggest the efficacy of pH-sensitive CMCS/ODA-LPs as a medication delivery method for WPTS.


Subject(s)
Amines , Antineoplastic Agents , Chitosan , Liposomes , Lipopolysaccharides , Particle Size
4.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2037-2044, 2021 Apr.
Article in Chinese | MEDLINE | ID: mdl-33982517

ABSTRACT

As a traditional Chinese medicine, Chinese dragon's blood has multiple effects, such as activating blood to remove blood stasis, softening and dispelling stagnation, astringent and hemostasis, clearing swelling and relieving pain, regulating menstruation and rectifying the blood, so it is called "an effective medicine of promoting blood circulation". It has been widely used clinically to treat a variety of diseases. With the further research on Chinese dragon's blood, its anti-tumor medicinal value is gradually emerging. Modern pharmacological studies have shown that Chinese dragon's blood exerts anti-tumor effects mainly by inhibiting cell proliferation, inducing apoptosis, inducing DNA damage and cell cycle arrest, inducing senescence and autophagy of tumor cells, inhibiting metastasis and angiogenesis, as well as reversing multidrug resistance. This article focuses on the research progress on anti-tumor effects of Chinese dragon's blood extract and its chemical components, with a view to provide new references for the in-depth research and reasonable utilization of Chinese dragon's blood.


Subject(s)
Dracaena , China , Female , Plant Extracts , Resins, Plant
5.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3700-3706, 2020 Aug.
Article in Chinese | MEDLINE | ID: mdl-32893561

ABSTRACT

This study aims to investigate the effect of Huaier aqueous extract on the growth and metastasis of human non-small cell lung cancer NCI-H1299 cells and its underlying mechanisms. MTT assay was used to detect the effect of Huaier aqueous extract on the proliferation of NCI-H1299 cells. Flow cytometry was used to examine the effect of Huaier aqueous extract on the apoptosis, cell cycle, and ROS level of NCI-H1299 cells. Wound healing assay was used to evaluate the effect of Huaier aqueous extract on the migration ability of NCI-H1299 cells. Western blot was used to detect the levels of proteins involving apoptosis, epithelial-mesenchymal transition(EMT), and MAPK signaling pathway in NCI-H1299 cells exposed to Huaier aqueous extract. The results showed that Huaier aqueous extract inhibited the proliferation of NCI-H1299 cells, and induced cell-cycle arrest at the phase S. Huaier aqueous extract promoted the apoptosis of NCI-H1299 cells by down-regulating the expression of anti-apoptotic protein Bcl-2. Moreover, Huaier aqueous extract increased ROS level and induced ferroptosis in NCI-H1299 cells. EMT played a critical role in cancer metastasis. Huaier aqueous extract reduced the migration ability of NCI-H1299 cells by inhibiting EMT of NCI-H1299 cells. In addition, this study revealed that Huaier aqueous extract inhibited MAPK signaling pathway in human non-small cell lung cancer NCI-H1299 cells, which may be one of Huaier's mechanisms in inhibiting growth and metastasis of NCI-H1299 cells. This study provides a new theoretical basis for the clinical treatment of lung cancer with Huaier, and important reference significance for further studies on the anti-tumor mechanisms of Huaier.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Complex Mixtures , Humans , Trametes
6.
Front Pharmacol ; 11: 669, 2020.
Article in English | MEDLINE | ID: mdl-32477135

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies, which ranks the third leading cause of cancer-related death worldwide. The screening of anti-HCC drug with high efficiency and low toxicity from traditional Chinese medicine (TCM) has attracted more and more attention. As a TCM, Chinese dragon's blood has been used for the treatment of cardiovascular illness, gynecological illness, skin disorder, otorhinolaryngological illness, and diabetes mellitus complications for many years. However, the anti-tumor effect and underlying mechanisms of Chinese dragon's blood remain ill-defined. Herein we have revealed that Chinese dragon's blood EtOAc extract (CDBEE) obviously suppressed the growth of human hepatoma HepG2 and SK-HEP-1 cells. Moreover, CDBEE inhibited the migration and invasion of HepG2 and SK-HEP-1 cells. Additionally, CDBEE displayed good in vitro anti-angiogenic activity. Importantly, CDBEE treatment significantly blunted the oncogenic capability of HepG2 cells in nude mice. Mechanistically, CDBEE inhibited Smad3 expression in human hepatoma cells and tumor tissues from nude mice. Using RNA interference, we demonstrated that CDBEE exerted anti-hepatoma activity partially through down-regulation of Smad3, one of major members in TGF-ß/Smad signaling pathway. Therefore, CDBEE may be a promising candidate drug for HCC treatment, especially for liver cancer with aberrant TGF-ß/Smad signaling pathway.

7.
Pharm Dev Technol ; 25(3): 316-325, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31661648

ABSTRACT

Curcumin, a polyphenol compound extracted from the roots of turmeric plants, possesses anti-depressant effect by regulating the levels of neuroendocrine immunological factors. The purpose of this study was to investigate the anti-depressant effect of curcumin through nasal delivery. The results of phase solubility, Fourier transform infrared spectra, Differential scanning calorimetry, X-ray powder diffractometry and 1H NMR spectra assays showed that curcumin/hydroxypropyl-ß-cyclodextrin complex had been obtained. The viscosity of hydrogel increased rapidly at the temperature range of 29-30 °C through the test of rheological property of Guanidine-Chitosan thermo-sensitive hydrogel. And the hydrogel had good mucoadhesion properties. The cumulative release rate of curcumin was 55% in 10 h in vitro drug release test. Curcumin-loaded (14.6, 29.2, or 58.4 µg/kg) thermo-sensitive hydrogel could reduce the immobility time of mice in force swimming test and tail suspension test, while could not increase the independent behavioral activity of mice. In addition, curcumin-loaded (14.6, 29.2, or 58.4 µg/kg) thermo-sensitive hydrogel could increase the concentration of Norepinephrine, Dopamine, 5-Hydroxytryptamine and their metabolites in hippocampus and striatum. In conclusion, thermo-sensitive hydrogel delivery system can be seen as a promising formulation of curcumin for the treatment of depression through nasal delivery.


Subject(s)
Antidepressive Agents/administration & dosage , Curcumin/administration & dosage , Depression/drug therapy , Drug Delivery Systems , Administration, Intranasal , Animals , Antidepressive Agents/pharmacology , Chitosan/chemistry , Curcumin/pharmacology , Disease Models, Animal , Drug Carriers/chemistry , Drug Liberation , Guanidine/chemistry , Hydrogels , Male , Mice , Mice, Inbred ICR , Solubility , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...