Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37954518

ABSTRACT

Deficiency mapping remains a useful tool in the process of identifying causative genetic lesions in C. elegans mutant strains isolated from forward genetic screens, in particular of non-coding mutants. However, there are significant areas across the genome with no deficiency coverage at all, and the boundaries of many deficiencies remain poorly defined. Here, we describe a simple methodology to generate balanced deficiency strains with up to 230 kb molecularly defined deletions (mini-deficiencies) using CRISPR/Cas9, thus providing a simple path for both precise and tailored deficiency mapping.

2.
Development ; 150(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37721334

ABSTRACT

During neural development, cellular adhesion is crucial for interactions among and between neurons and surrounding tissues. This function is mediated by conserved cell adhesion molecules, which are tightly regulated to allow for coordinated neuronal outgrowth. Here, we show that the proprotein convertase KPC-1 (homolog of mammalian furin) regulates the Menorin adhesion complex during development of PVD dendritic arbors in Caenorhabditis elegans. We found a finely regulated antagonistic balance between PVD-expressed KPC-1 and the epidermally expressed putative cell adhesion molecule MNR-1 (Menorin). Genetically, partial loss of mnr-1 suppressed partial loss of kpc-1, and both loss of kpc-1 and transgenic overexpression of mnr-1 resulted in indistinguishable phenotypes in PVD dendrites. This balance regulated cell-surface localization of the DMA-1 leucine-rich transmembrane receptor in PVD neurons. Lastly, kpc-1 mutants showed increased amounts of MNR-1 and decreased amounts of muscle-derived LECT-2 (Chondromodulin II), which is also part of the Menorin adhesion complex. These observations suggest that KPC-1 in PVD neurons directly or indirectly controls the abundance of proteins of the Menorin adhesion complex from adjacent tissues, thereby providing negative feedback from the dendrite to the instructive cues of surrounding tissues.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Ligands , Cell Membrane , Animals, Genetically Modified , Biological Transport , Caenorhabditis elegans/genetics , Dendrites , Mammals , Membrane Proteins , Caenorhabditis elegans Proteins/genetics
3.
Curr Biol ; 33(18): 3835-3850.e6, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37591249

ABSTRACT

Studies of neuronal connectivity in model organisms, i.e., of their connectomes, have been instrumental in dissecting the structure-function relationship of nervous systems. However, the limited sample size of these studies has impeded analyses into how variation of connectivity across populations may influence circuit architecture and behavior. Moreover, little is known about how experiences induce changes in circuit architecture. Here, we show that an asymmetric salt-sensing circuit in the nematode Caenorhabditis elegans exhibits variation that predicts the animals' salt preferences and undergoes restructuring during salt associative learning. Naive worms memorize and prefer the salt concentration they experience in the presence of food through a left-biased neural network architecture. However, animals conditioned at elevated salt concentrations change this left-biased network to a right-biased network. This change in circuit architecture occurs through the addition of new synapses in response to asymmetric, paracrine insulin signaling. Therefore, experience-dependent changes in an animal's neural connectome are induced by insulin signaling and are fundamental to learning and behavior.


Subject(s)
Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans Proteins/physiology , Insulin , Chemotaxis/physiology , Caenorhabditis elegans/physiology , Synapses , Sodium Chloride
4.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711870

ABSTRACT

Asymmetric brain function is common across the animal kingdom and involved in language processing, and likely in learning and memory. What regulates asymmetric brain function remains elusive. Here, we show that the nematode Caenorhabditis elegans restructures an asymmetric salt sensing neural circuit during associative learning. Worms memorize and prefer the salt concentration at which they were raised in the presence of food through a left-biased network architecture. When conditioned at elevated salt concentrations, animals change the left-biased to a right-biased network, which explains the changed salt-seeking behavior. The changes in circuit architecture require new synapse formation induced through asymmetric, paracrine insulin-signaling. Therefore, experience-dependent changes in asymmetric network architecture rely on paracrine insulin signaling and are fundamental to learning and behavior.

5.
PLoS Genet ; 17(7): e1009475, 2021 07.
Article in English | MEDLINE | ID: mdl-34197450

ABSTRACT

The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Neurons/physiology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Animals, Genetically Modified , Axons/physiology , Body Patterning , Caenorhabditis elegans Proteins/genetics , Cell Movement/genetics , Dendrites/physiology , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Mutation , Wnt Signaling Pathway
6.
Nature ; 571(7763): 63-71, 2019 07.
Article in English | MEDLINE | ID: mdl-31270481

ABSTRACT

Knowledge of connectivity in the nervous system is essential to understanding its function. Here we describe connectomes for both adult sexes of the nematode Caenorhabditis elegans, an important model organism for neuroscience research. We present quantitative connectivity matrices that encompass all connections from sensory input to end-organ output across the entire animal, information that is necessary to model behaviour. Serial electron microscopy reconstructions that are based on the analysis of both new and previously published electron micrographs update previous results and include data on the male head. The nervous system differs between sexes at multiple levels. Several sex-shared neurons that function in circuits for sexual behaviour are sexually dimorphic in structure and connectivity. Inputs from sex-specific circuitry to central circuitry reveal points at which sexual and non-sexual pathways converge. In sex-shared central pathways, a substantial number of connections differ in strength between the sexes. Quantitative connectomes that include all connections serve as the basis for understanding how complex, adaptive behavior is generated.


Subject(s)
Caenorhabditis elegans/metabolism , Connectome , Nervous System/anatomy & histology , Nervous System/metabolism , Sex Characteristics , Animals , Behavior, Animal , Caenorhabditis elegans/cytology , Female , Head/anatomy & histology , Head/innervation , Hermaphroditic Organisms , Male , Microscopy, Electron , Motor Activity , Movement , Nervous System/cytology , Neural Pathways
7.
Development ; 145(10)2018 05 14.
Article in English | MEDLINE | ID: mdl-29678816

ABSTRACT

The extracellular matrix is essential for various aspects of nervous system patterning. For example, sensory dendrites in flies, worms and fish have been shown to rely on coordinated interactions of tissues with extracellular matrix proteins. Here we show that the conserved basement membrane protein UNC-52/Perlecan is required for establishing the correct number of the highly ordered dendritic trees in the somatosensory neuron PVD in Caenorhabditis elegans This function is dependent on four specific immunoglobulin domains, but independent of the known functions of UNC-52 in mediating muscle-skin attachment. Intriguingly, the four conserved immunoglobulin domains in UNC-52 are necessary to correctly localize the basement membrane protein NID-1/Nidogen. Genetic experiments further show that unc-52, nid-1 and genes of the netrin axon guidance signaling cassette share a common pathway to establish the correct number of somatosensory dendrites. Our studies suggest that, in addition to its role in mediating muscle-skin attachment, UNC-52 functions through immunoglobulin domains to establish an ordered lattice of basement membrane proteins, which may control the function of morphogens during dendrite patterning.


Subject(s)
Axon Guidance/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Dendrites/metabolism , Membrane Glycoproteins/metabolism , Membrane Proteins/metabolism , Nervous System/embryology , Proteoglycans/metabolism , Animals , Axon Guidance/genetics , Caenorhabditis elegans Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Netrins/genetics , Netrins/metabolism , Protein Domains/genetics , Proteoglycans/genetics , RNA Interference , RNA, Small Interfering/genetics
8.
Nat Commun ; 6: 7728, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26173895

ABSTRACT

Synapsins are key components of the presynaptic neurotransmitter release machinery. Their main role is to cluster synaptic vesicles (SVs) to each other and anchor them to the actin cytoskeleton to establish the reserve vesicle pool, and then release them in response to appropriate membrane depolarization. Here we demonstrate that SUMOylation of synapsin Ia (SynIa) at K687 is necessary for SynIa function. Replacement of endogenous SynIa with a non-SUMOylatable mutant decreases the size of the releasable vesicle pool and impairs stimulated SV exocytosis. SUMOylation enhances SynIa association with SVs to promote the efficient reclustering of SynIa following neuronal stimulation and maintain its presynaptic localization. The A548T mutation in SynIa is strongly associated with autism and epilepsy and we show that it leads to defective SynIa SUMOylation. These results identify SUMOylation as a fundamental regulator of SynIa function and reveal a novel link between reduced SUMOylation of SynIa and neurological disorders.


Subject(s)
Autistic Disorder/genetics , Epilepsy/genetics , Exocytosis/genetics , Neurons/metabolism , Sumoylation , Synapsins/genetics , Synaptic Transmission/genetics , Synaptic Vesicles/metabolism , Animals , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mutation , Rats , Rats, Wistar , Synapses/metabolism , Synapsins/metabolism
9.
Neuromolecular Med ; 15(4): 692-706, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23934328

ABSTRACT

Timely and efficient information transfer at synapses is fundamental to brain function. Synapses are highly dynamic structures that exhibit long-lasting activity-dependent alterations to their structure and transmission efficiency, a phenomenon termed synaptic plasticity. These changes, which occur through alterations in presynaptic release or in the trafficking of postsynaptic receptor proteins, underpin the formation and stabilisation of neural circuits during brain development, and encode, process and store information essential for learning, memory and cognition. In recent years, it has emerged that the ubiquitin-like posttranslational modification SUMOylation is an important mediator of several aspects of neuronal and synaptic function. Through orchestrating synapse formation, presynaptic release and the trafficking of postsynaptic receptor proteins during forms of synaptic plasticity such as long-term potentiation, long-term depression and homeostatic scaling, SUMOylation is being increasingly appreciated to play a central role in neurotransmission. In this review, we outline key discoveries in this relatively new field, provide an update on recent progress regarding the targets and consequences of protein SUMOylation in synaptic function and plasticity, and highlight key outstanding questions regarding the roles of protein SUMOylation in the brain.


Subject(s)
Nerve Tissue Proteins/physiology , Neuronal Plasticity , Protein Transport/physiology , Receptors, Neurotransmitter/metabolism , Small Ubiquitin-Related Modifier Proteins/physiology , Sumoylation/physiology , Synaptic Transmission/physiology , Animals , Glycogen Synthase Kinase 3/physiology , Glycogen Synthase Kinase 3 beta , Guanylate Kinases/physiology , Humans , MEF2 Transcription Factors/physiology , Neurogenesis , Neurons/metabolism , PTEN Phosphohydrolase/physiology , Potassium Channels/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptors, Kainic Acid/metabolism , Receptors, Metabotropic Glutamate/metabolism , Receptors, Presynaptic/physiology , Ubiquitin-Protein Ligase Complexes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...