Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566102

ABSTRACT

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Immunotherapy , ErbB Receptors/genetics , Anti-Bacterial Agents/therapeutic use
2.
Cancers (Basel) ; 16(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254793

ABSTRACT

Background: COVID-19 has been ravaging the globe for more than three years. Due to systemic immunosuppression of anti-tumor therapy, application of chemotherapy and adverse effects of surgery, the short- and long-term prognosis of cancer patients to COVID-19 are of significant concern. Method: This research included three parts of data. The first part of the data came from the public database that covered Veneto residents. The second part of the data included participants in Guangzhou. The third part of the data was used for MR analysis. We assessed the associations by logistic, linear or Cox regression when appropriate. Result: Lung cancer patients with COVID-19 had shorter progression-free survival (PFS) after COVID-19 (Model II: HR: 3.28, 95% CI: 1.6~6.72; Model III: HR: 3.39, 95% CI: 1.45~7.95), compared with lung cancer patients without COVID-19. Targeted therapy patients recovered from SARS-CoV-2 infection more quickly (Model I: ß: -0.58, 95% CI: -0.75~-0.41; Model II: ß: -0.59, 95% CI: -0.76~-0.41; Model III: ß: -0.57; 95% CI: -0.75~-0.40). Conclusions: PFS in lung cancer patients is shortened by COVID-19. The outcome of COVID-19 in lung cancer patients was not significantly different from that of the healthy population. In lung cancer patients, targeted therapy patients had a better outcome of COVID-19, while chemotherapy patients had the worst.

3.
Hepatology ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37820061

ABSTRACT

BACKGROUND AND AIMS: Cancer stem cells (CSCs) contribute to therapy resistance in HCC. Linear ubiquitin chain assembly complex (LUBAC) has been reported to accelerate the progression of cancers, yet its role in the sorafenib response of HCC is poorly defined. Herein, we investigated the impact of LUBAC on sorafenib resistance and the CSC properties of HCC, and explored the potential targeted drugs. APPROACH AND RESULTS: We found that HOIL-1, but not the other components of LUBAC, played a contributing role in LUBAC-mediated HCC sorafenib resistance, independent of its ubiquitin ligase activity. Both in vitro and in vivo assays revealed that the upregulated HOIL-1 expression enhanced the CSC properties of HCC. Mechanistically, HOIL-1 promoted sorafenib resistance and the CSC properties of HCC through Notch1 signaling. Mass spectrometry, co-immunoprecipitation, western blot, and immunofluorescence were used to determine that the A64/Q65 residues of HOIL-1 bound with the K78 residue of Numb, resulting in impaired Numb-mediated Notch1 lysosomal degradation. Notably, pixantrone was screened out by Autodock Vina, which was validated to disrupt HOIL-1/Numb interaction to inhibit Notch1 signaling and CSC properties by targeting the Q65 residue of HOIL-1. Moreover, pixantrone exerted synergistic effects with sorafenib for the treatment of HCC in different HCC mouse models. CONCLUSIONS: HOIL-1 is critical in promoting sorafenib resistance and CSC properties of HCC through Notch1 signaling. Pixantrone targeting HOIL-1 restrains the sorafenib resistance and provides a potential therapeutic intervention for HCC.

4.
J Med Virol ; 95(10): e29142, 2023 10.
Article in English | MEDLINE | ID: mdl-37815034

ABSTRACT

Available therapies for chronic hepatitis B virus (HBV) infection are not satisfying, and interleukin-21 (IL-21) and checkpoint inhibitors are potential therapeutic options. However, the mechanism underlying IL-21 and checkpoint inhibitors in treating chronic HBV infection is unclear. To explore whether IL-21 and checkpoint inhibitors promote HBV clearance by modulating the function of natural killer (NK) cells, we measured the phenotypes and functions of NK cells in chronic HBV-infected patients and healthy controls on mRNA and protein levels. We found that chronic HBV infection disturbed the transcriptome of NK cells, including decreased expression of KLRK1, TIGIT, GZMA, PRF1, and increased expression of CD69. We also observed altered phenotypes and functions of NK cells in chronic HBV-infected patients, characterized by decreased NKG2D expression, increased TIGIT expression and impaired interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α) production. Furthermore, these alterations cannot be restored by telbivudine treatment but can be partially restored by IL-21 and anti-TIGIT stimulation. IL-21 upregulated the expression of activating receptor CD16, CD69, and NKG2D on NK cells, enhanced IFN-γ production, cytolysis, and proliferation of NK cells, while anti-TIGIT promoted IFN-γ production in CD56dim subset exclusively in chronic HBV infected patients. Additionally, IL-21 was indispensable for anti-TIGIT in HBsAg clearance in mice bearing HBV. It enhanced IFN-γ production in splenic NK cells rather than intrahepatic NK cells, indicating a brand-new mechanism of IL-21 in HBV clearance when combined with anti-TIGIT. Overall, our findings contribute to the design of immunotherapy through enhancing the antiviral efficacy of NK cells in chronic HBV infection.


Subject(s)
Hepatitis B, Chronic , Animals , Humans , Mice , Hepatitis B virus , Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/therapeutic use , Receptors, Immunologic
5.
Curr Mol Med ; 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312441

ABSTRACT

INTRODUCTION: This study implies the enhancement of apatinib killing effect in 4T1 tumor cells through constructing drug-loaded nanoparticles apatinib/Ce6@ZIF-8@Membranes (aCZM) to enhance tumor therapeutic targeting and reduce toxic side following sonodynamic therapy (SDT). METHODS: apatinib/Ce6@ZIF-8 (aCZ) were synthesized by in situ encapsulation, and aCZM were constructed by encapsulating the nanoparticles with extracted breast cancer 4T1 cell membranes. aCZM were characterized and tested for the stability by electron microscopy, and the membrane proteins on the nanoparticles' surface were assessed using SDS-PAGE gel electrophoresis. The cell viability of 4T1 cells following treatment with aCZM was tested using cell counting kit-8 (CCK-8). The uptake of nanoparticles was detected by laser confocal microscopy and flow cytometry, and the SDT-mediated production of reactive oxygen species (ROS) was verified by singlet oxygen sensor green (SOSG), electron spin resonance (ESR), and DCFH-DA fluorescent probes. The CCK-8 assay and flow cytometry using Calcein/PI were used to assess the antitumoral effect of aCZM nanoparticles under SDT. The biosafety of aCZM was further verified in vitro and in vivo using the hemolysis assay, routine blood test and H&E staining of vital organs in Balb/c mice. RESULTS: aCZM with an average particle size of about 210.26 nm were successfully synthesized. The results of the SDS-PAGE gel electrophoresis experiment showed that aCZM have a band similar to that of pure cell membrane proteins. The CCK-8 assay demonstrated the absence of effects on cell viability at a low concentration range, and the relative cell survival rate reached more than 95%. Laser confocal microscopy and flow cytometry analysis showed that aCZM treated group has the strongest fluorescence and the highest cellular uptake of nanoparticles. SOSG, ESR, and DCFH-DA fluorescent probes all indicated that the aCZM + SDT treated group has the highest ROS production. The CCK-8 assay also showed that when the ultrasound intensity was fixed at 0.5 W/cm2, the relative cell survival rates in the medium concentration group (10 µg/ml) (5.54 ± 1.26%) and the high concentration group (20 µg/ml) (2.14 ± 1.63%) were significantly lower than those in the low concentration group (5 µg/ml) (53.40 ± 4.25%). Moreover, there was a concentration and intensity dependence associated with the cell-killing effect. The mortality rate of the aCZM in the ultrasound group (44.95±3.03%) was significantly higher than that of the non-ultrasound (17.00±2.26%) group and aCZ + SDT group (24.85 ± 3.08%) (P<0.0001). The live and dead cells' staining (Calcein/PI) also supported this result. Finally, in vitro hemolysis test at 4 and 24 hours showed that the hemolysis rate of the highest concentration group was less than 1%. The blood routine, biochemistry, and H&E staining results of major organs in Balb/c mice undergoing nano-treatments showed no obvious functional abnormalities and tissue damage in 30 days. CONCLUSION: In this study, a multifunctional bionic drug delivery nanoparticles (aCZM) system with good biosafety and compatibility in response to acoustic dynamics was successfully constructed and characterized. This system enhanced apatinib killing effect on tumor cells and reduced toxic side effects under SDT.

6.
Virol J ; 20(1): 109, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264390

ABSTRACT

BACKGROUND: The relationship between chronic hepatitis B (CHB) and Coronavirus disease 2019 (COVID-19) has been inconsistent in traditional observational studies. METHODS: We explored the total causal and direct causal associations between CHB and the three COVID-19 outcomes using univariate and multivariate Mendelian randomization (MR) analyses, respectively. Genome-wide association study datasets for CHB and COVID-19 were obtained from the Japan Biobank and the COVID-19 Host Genetics Initiative, respectively. RESULTS: Univariate MR analysis showed that CHB increased the risk of SARS-CoV-2 infection (OR = 1.04, 95% CI 1.01-1.07, P = 3.39E-03), hospitalized COVID-19 (OR = 1.10, 95% CI 1.06-1.13, P = 7.31E-08), and severe COVID-19 (OR = 1.16, 95%CI 1.08-1.26, P = 1.43E-04). A series of subsequent sensitivity analyses ensured the stability and reliability of these results. In multivariable MR analyses adjusting for type 2 diabetes, body mass index, basophil count, and smoking, genetically related CHB is still positively associated with increased risk of SARS-CoV-2 infection (OR = 1.06, 95% CI 1.02-1.11, P = 1.44E-03) and hospitalized COVID-19 (OR = 1.12, 95% CI 1.07-1.16, P = 5.13E-07). However, the causal link between CHB and severe COVID-19 was attenuated after adjustment for the above variables. In addition, the MR analysis did not support the causal effect of COVID-19 on CHB. CONCLUSIONS: This study provides evidence that CHB increases COVID-19 susceptibility and severity among individuals of East Asian ancestry.


Subject(s)
COVID-19 , Hepatitis B, Chronic , Humans , COVID-19/epidemiology , East Asian People , Genome-Wide Association Study , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/epidemiology , Reproducibility of Results
7.
Virus Res ; 331: 199129, 2023 07 02.
Article in English | MEDLINE | ID: mdl-37160233

ABSTRACT

BACKGROUND: Gut microbiota is crucial for immune homeostasis and is associated with the prognosis of chronic hepatitis B infection. Peyer's patches (PPs), characterized by intestinal mucosa localization, are involved in the gut microbiota-mediated immune response. However, whether and how PPs orchestrate gut microbiota-modulated anti-hepatitis B virus (HBV) response remain elusive. This study aims to elucidate the role of PPs in gut microbiota-mediated anti-HBV adaptive immunity. METHODS: We investigated the effects of gut microbiota and PPs on adaptive immune responses by transcriptomic, phenotypic, and functional analyzes from an HBV mouse model with gut commensal microbiota and PP-depleting interventions. RESULTS: Depletion of gut microbiota impaired systemic adaptive immune responses, resulting in a delayed HBV antigen clearance. Differentially expressed genes analysis of PPs revealed that pathways related to adaptive immune responses were significantly downregulated in gut microbiota-deficient mice. Notably, the depletion of PPs could abolish gut microbiota-boosted intrahepatic HBV-specific T cell response, leading to a higher serum hepatitis B surface antigen level in mice. CONCLUSION: PPs orchestrate gut microbiota-mediated intrahepatic anti-HBV cellular immunity, underlining the significance of remote manipulating the "gut microbiota-PPs" axis for achieving optimum anti-HBV response.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Immunity, Cellular
8.
Hepatology ; 78(2): 592-606, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36896974

ABSTRACT

BACKGROUND AND AIM: Long-term maintenance of viral control, even HBsAg loss, remains a challenge for chronic hepatitis B (CHB) patients undergoing nucleos(t)ide analogue (NA) discontinuation. This study aimed to investigate the relationship between HBV-specific T-cell responses targeting peptides spanning the whole proteome and clinical outcomes in CHB patients after NA discontinuation. APPROACH AND RESULTS: Eighty-eight CHB patients undergoing NA discontinuation were classified as responders (remained relapse-free up to 96 weeks) or relapsers (relapsed patients who underwent NA retreatment for up to 48 weeks and reachieved stable viral control). HBV-specific T-cell responses were detected at baseline and longitudinally throughout the follow-up. We found responders had a greater magnitude of HBV polymerase (Pol)-specific T-cell responses than relapsers at baseline. After long-term NA discontinuation, simultaneously enhanced HBV Core-induced and Pol-induced responses were observed in responders. Particularly, responders with HBsAg loss possessed enhanced HBV Envelope (Env)-induced responses after short-term and long-term follow-up. Notably, CD4 + T cells accounted for the predominance of HBV-specific T-cell responses. Correspondingly, CD4-deficient mice showed attenuated HBV-specific CD8 + T-cell responses, reduced HBsAb-producing B cells, and delayed HBsAg loss; in contrast, in vitro addition of CD4 + T cells promoted HBsAb production by B cells. Besides, IL-9, rather than PD-1 blockade, enhanced HBV Pol-specific CD4 + T-cell responses. CONCLUSION: HBV-specific CD4 + T-cell responses induced by the targeted peptide possess specificities for long-term viral control and HBsAg loss in CHB patients undergoing NA discontinuation, indicating that CD4 + T cells specific to distinct HBV antigens may endow with divergent antiviral potential.


Subject(s)
CD4-Positive T-Lymphocytes , Hepatitis B Surface Antigens , Hepatitis B, Chronic , Animals , Mice , Antiviral Agents/therapeutic use , DNA, Viral , Hepatitis B e Antigens , Hepatitis B virus , Hepatitis B, Chronic/drug therapy , Treatment Outcome , Nucleosides/analogs & derivatives
9.
Antiviral Res ; 213: 105585, 2023 05.
Article in English | MEDLINE | ID: mdl-36963665

ABSTRACT

BACKGROUND & AIMS: Treatment with nucleos(t)ide analogue (NA) efficiently suppresses viral replication in patients with chronic HBV infection, yet HBV relapses frequently upon NA withdrawal; the detailed immunomodulatory compounds for sustained viral control of HBV upon NA interruption have yet to be fully clarified. This study aimed to elucidate the role of T cells specific for distinct HBV peptides in sustained response upon discontinuation of antiviral treatment. METHODS: A total of 48 patients with HBeAg-positive chronic hepatitis B receiving NA treatment and withdrawal were included longitudinally in a retrospective and prospective cohort. Enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining (ICS) assays were performed to detect IFN-γ producing HBV-specific T cells following stimulation with overlapping peptides covering the whole HBV genome after 10 days of in vitro expansion. RESULTS: ICS assays revealed that T cells specific for HBV Core and Polymerase induced more robust IFN-γ responses compared to Envelope and HBx. Notably, at the time of NA discontinuation, the intensity and breadth of HBV Core peptides-induced responses, predominately targeted by CD4+ T cells but not CD8+ T cells, were associated with sustained viral control upon off-treatment. Further exploration of longitudinal features in patients with sustained viral control revealed that the breadth of HBV-specific T cell responses does not increase following treatment cessation. CONCLUSION: This report emphasizes the essential role of HBV Core-specific CD4+ T cells in sustained response after therapy withdrawal, indicating it is a potential candidate for immunotherapeutic approaches in chronic HBV patients.


Subject(s)
Hepatitis B, Chronic , Humans , Hepatitis B, Chronic/drug therapy , Hepatitis B virus/genetics , Hepatitis B e Antigens , Prospective Studies , Retrospective Studies , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes , DNA, Viral
10.
J Med Virol ; 95(3): e28642, 2023 03.
Article in English | MEDLINE | ID: mdl-36890630

ABSTRACT

Individuals with a recent common cold coronavirus infection, which leads to pre-existing immunity against SARS-CoV-2, displayed a less severe course of COVID-19. However, the relationship between pre-existing immunity against SARS-CoV-2 and the inactivated-vaccine-induced immune response is still unknown. Here, 31 healthcare workers who received standard two doses of inactivated COVID-19 vaccines (Weeks 0 and 4, respectively) were enrolled, vaccine-induced neutralization and T cell responses were detected, and the correlation between the pre-existing SARS-CoV-2-specific immunity was analyzed. We found the SARS-CoV-2-specific antibodies, pseudovirus neutralization test (pVNT) titers, and spike-specific interferon gamma (IFN-γ) production in CD4+ and CD8+ T cells were significantly elevated after two doses of inactivated vaccines. Interestingly, the pVNT titers after the second dose of vaccination displayed no significant correlation with the pre-existing SARS-CoV-2-specific antibodies or B cells, nor the pre-existing spike-specific CD4+ T cells. Notably, the spike-specific T cell response after the second dose of vaccination was positively correlated with the pre-existing receptor binding domain (RBD)-specific B cells and CD4+ T cells, which were documented by the frequencies of RBD-binding B cells, the breadth of RBD-specific B cell epitopes, and the frequency of IFN-γ-expressing RBD-specific CD4+ T cells. Overall, the inactivated-vaccine-induced T cell responses, not the inactivated-vaccine-induced neutralization, closely correlated with pre-existing immunity to SARS-CoV-2. Our results provide a better understanding of inactivated-vaccine-induced immunity and help predict the immunogenicity induced by inactivated vaccines in individuals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Antibodies, Viral , Vaccination , Antibodies, Neutralizing , Vaccines, Inactivated
11.
BMC Immunol ; 24(1): 3, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635631

ABSTRACT

BACKGROUND: A major barrier to achieving a favorable outcome of chronic HBV infection is a dysregulated HBV-specific immune response resulting from immunosuppressive features of FOXP3+ T cells. A better definition of FOXP3+ T cells is essential for improving the prognosis of HBV infection. We aimed to investigate the role of CD4+CXCR5-FOXP3+ T cells with CTLA4 expression in patients with chronic HBV infection. METHODS: Treatment-naïve chronic HBV-infected patients, HBV-related hepatic failure, and a longitudinal cohort of chronic hepatitis B (CHB) patients with nucleos(t)ide analogue treatment were enrolled for analysis of CD4+CXCR5-FOXP3+ T cell responses by flow cytometry and single-cell RNA sequencing (scRNA-seq). RESULTS: ScRNA-seq revealed that circulating CD4+CXCR5-FOXP3+ T cells presented distinct inhibitory features compared to spleen tissue. Meanwhile, patients with treatment-naïve chronic HBV infection or with HBV-related hepatic failure showed an upregulation of immune-suppressive features (PD-1, CTLA4, GITR) on CD4+CXCR5-FOXP3+T cells; in vitro analysis found HBeAg and HBcAg stimulation induced elevated levels of inhibitory molecules. Notably, the frequency of CTLA4+CD4+CXCR5-FOXP3+ T cells was positively correlated with HBV DNA levels, and longitudinal analysis demonstrated a high frequency of this subset at 12 weeks of antiviral treatment predicted unfavorable outcome in CHB patients. CONCLUSIONS: CTLA4+CD4+CXCR5-FOXP3+ T cells are related to unfavorable outcomes in HBV-infected patients; these data indicated that alleviating CTLA4+CD4+CXCR5-FOXP3+ T cells may improve the prognosis of HBV infection.


Subject(s)
Hepatitis B, Chronic , Liver Failure , T-Lymphocytes , Humans , CTLA-4 Antigen , Forkhead Transcription Factors , Hepatitis B virus , Hepatitis B, Chronic/drug therapy , Receptors, CXCR5
12.
Antiviral Res ; 207: 105420, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36165866

ABSTRACT

OBJECTIVES: Dissecting the underlying mechanism of T cells remodeling mediated by interferon α (IFN-α) is indispensable for achieving an optimum therapeutic response in chronic hepatitis B (CHB) patients. However, little is known about B cells in this process. This study aims to elucidate the roles of B cells in IFN-α-mediated anti-hepatitis B virus (HBV) cellular immunity. METHOD: The effects of B cells on IFN-α-mediated T cell response were investigated in B cell-deficient mouse model with HBV and IFN-α plasmid hydrodynamic injection. Single-cell RNA sequencing was performed to dissect the crosstalk among B cell and T cell subsets and the underlying molecule and pathway signatures on longitudinal blood samples from IFN-α-treated CHB patients. RESULTS: B cell depletion impaired the functional T cell subsets, including HBV-specific CD8+ T cells, and engendered a delayed HBV clearance. IFN-α treatment boosted the response of HBV-specific CD8+ T cells, whereas such effects disappeared in B cell-deficient mice. The underlying mechanisms were associated with IFN-α-reinforced connections of B cells toward T cells as mediated by the antigen presentation and costimulatory functions in B cells. CONCLUSION: IFN-α orchestrates protective HBV-specific cellular immunity in a B cell-dependent manner.


Subject(s)
CD8-Positive T-Lymphocytes , Hepatitis B, Chronic , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Immunity, Cellular , Interferon-alpha/therapeutic use , Mice , T-Lymphocyte Subsets
13.
Am J Reprod Immunol ; 88(4): e13610, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35957616

ABSTRACT

PROBLEM: Hepatitis B virus (HBV) infection is more likely to develop a state of chronicity in early life, particularly mother-to-child transmission (MTCT) of HBV in the fetus during pregnancy. Till now, little is known about the impact of chronic HBV infection on the immune status of the maternal-fetus interface, and the immune profile of placental lymphocytes in MTCT of HBV is poorly understood. METHOD OF STUDY: Thirteen term pregnant women with chronic HBV infection (HBV-PW) and thirteen normal pregnant women as healthy control (HC-PW) were enrolled. The profile of placental immune cells and paired peripheral blood were analyzed by flow cytometry and immunohistochemistry. RESULTS: Compared with HC-PW, the frequency of CD8+ T cells from the term placenta of HBV-PW was significantly reduced. These cells showed decreased expression of activation molecules CD69 and HLA-DR; thus, decidual CD8+ T cells from HBV-PW demonstrated hypofunctional signature as evidenced by significantly reduced production of IFN-γ, as well as compromised ability of degranulation and proliferation. CONCLUSIONS: These findings supported that hypoactivated decidual CD8+ T cells might possess compromised ability in chronically HBV-infected term pregnant women. Our study provides robust evidence for the necessity and importance of antiviral intervention in HBV-PW to prevent MTCT of HBV.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , CD8-Positive T-Lymphocytes , Decidua , Female , Hepatitis B virus/physiology , Humans , Infectious Disease Transmission, Vertical/prevention & control , Placenta , Pregnancy
14.
J Med Virol ; 94(10): 4993-5006, 2022 10.
Article in English | MEDLINE | ID: mdl-35676468

ABSTRACT

The elimination of hepatitis B virus (HBV) infection is partially facilitated by the prophylactic HB vaccine. As the loss of seroprotection over time remains a conundrum for long-lasting protection, a comprehensive dynamic analysis of immunogenic targets of the HB vaccine will provide novel insights into the improvement and design of potential targets. In this study, 36 healthy subjects without prior history of hepatitis B infection and negative for hepatitis B surface antibody (anti-HBs) were enrolled. Participants were given a series of three doses of HB vaccine on a 0-, 1-, and 6-month schedule and longitudinally followed up. We systematically mapped 55 overlapping 15-mer peptides covering the small S protein of hepatitis B virus (SHBs) of vaccinees' serum samples at seven time points by performing an ELISA assay. Additionally, the frequencies and function dynamics of adaptive immune response were assessed by flow cytometry. We found that the SHBs peptide coverage presented an overall upward trend along with the vaccination progress, and the individual subpartition recognition was strongly correlated with the anti-HBs titers. Moreover, we identified one dominant epitope (S29) located on "a determinant region" associated with effective vaccine response. Besides, significant correlations between the proportion of plasmablasts and proliferating B cells and levels of anti-HBs were ascertained. Taken together, our data characterized the dynamics of HB vaccine-induced neutralizing antibodies against B-cell linear epitopes on SHBs and adaptive immune response, which will be constructive to develop the next-generation vaccine.


Subject(s)
Hepatitis A , Hepatitis B , Epitopes, B-Lymphocyte , Hepatitis B/prevention & control , Hepatitis B Antibodies , Hepatitis B Surface Antigens , Hepatitis B Vaccines , Hepatitis B virus , Humans , Vaccination
15.
J Exp Clin Cancer Res ; 41(1): 77, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35209949

ABSTRACT

BACKGROUND: Metabolic reprogramming is a hallmark of cancer. However, the roles of long noncoding RNAs (lncRNAs) in cancer metabolism, especially glucose metabolism remain largely unknown. RESULTS: In this study, we identified and functionally characterized a novel metabolism-related lncRNA, LINC00930, which was upregulated and associated with tumorigenesis, lymphatic invasion, metastasis, and poor prognosis in nasopharyngeal carcinoma (NPC). Functionally, LINC00930 was required for increased glycolysis activity and cell proliferation in multiple NPC models in vitro and in vivo. Mechanistically, LINC00930 served as a scaffold to recruit the RBBP5 and GCN5 complex to the PFKFB3 promoter and increased H3K4 trimethylation and H3K9 acetylation levels in the PFKFB3 promoter region, which epigenetically transactivating PFKFB3, and thus promoting glycolytic flux and cell cycle progression. Clinically, targeting LINC00930 and PFKFB3 in combination with radiotherapy induced tumor regression. CONCLUSIONS: Collectively, LINC00930 is mechanistically, functionally and clinically oncogenic in NPC. Targeting LINC00930 and its pathway may be meaningful for treating patients with NPC.


Subject(s)
Glycolysis/genetics , Nasopharyngeal Neoplasms/genetics , Oncogenes/genetics , Phosphofructokinase-2/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Humans , Mice , Nasopharyngeal Neoplasms/pathology , Transfection
16.
J Infect Dis ; 225(11): 1955-1966, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34214150

ABSTRACT

BACKGROUND: The outcome of hepatitis B virus (HBV) infection is significantly affected by host immune response; herein, we aim to dissect the effect of L-carnitine (L-Cn) on germinal center (GC)-related immune cells and the influence on the prognosis of HBV infection. METHODS: In vitro and in vivo experiments were performed in patients with chronic HBV infection and a hydrodynamic injection mouse model. RESULTS: In vitro assays revealed that L-Cn significantly reduced GC-related immune responses and enhanced immunosuppressive profiles. Intriguingly, L-Cn released from lysed hepatocytes was associated with the degree of liver damage. Besides, the administration of L-Cn in an HBV mouse model resulted in delayed clearance of hepatitis B surface antigen (HBsAg) in serum and decreased GC formation in the spleen. Notably, patients with HBsAg loss showed decreased plasma L-Cn levels, and longitudinal observations found that low baseline levels of L-Cn were associated with a favorable treatment response in patients with chronic hepatitis B. CONCLUSIONS: The suppressive effect of hepatocyte-derived L-Cn on GC-related immune cells may contribute to the inability of HBsAg clearance in chronic HBV infection, indicating that L-Cn might serve as a potential therapeutic target for the treatment of HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Animals , Carnitine/pharmacology , Carnitine/therapeutic use , Germinal Center , Hepatitis B Surface Antigens , Hepatitis B virus , Hepatocytes , Humans , Mice
17.
Front Mol Biosci ; 8: 805625, 2021.
Article in English | MEDLINE | ID: mdl-34926586

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a leading cause of hepatic inflammation and damage. The pathogenesis of chronic hepatitis B (CHB) infection is predominantly mediated by persistent intrahepatic immunopathology. With the characterization of unique anatomical and immunological structure, the liver is also deemed an immunological organ, which gives rise to massive cytokines and chemokines under pathogenesis conditions, having significant implications for the progression of HBV infection. The intrahepatic innate immune system is responsible for the formidable source of cytokines and chemokines, with the latter also derived from hepatic parenchymal cells. In addition, systemic cytokines and chemokines are disturbed along with the disease course. Since HBV is a stealth virus, persistent exposure to HBV-related antigens confers to immune exhaustion, whereby regulatory cells are recruited by intrahepatic chemokines and cytokines, including interleukin-10 and transforming growth factor ß, are involved in such series of causal events. Although the considerable value of two types of available approved treatment, interferons and nucleos(t)ide analogues, effectively suppress HBV replication, neither of them is sufficient for optimal restoration of the immunological attrition state to win the battle of the functional or virological cure of CHB infection. Notably, cytokines and chemokines play a crucial role in regulating the immune response. They exert effects by directly acting on HBV or indirectly manipulating target immune cells. As such, specific cytokines and chemokines, with a potential possibility to serve as novel immunological interventions, combined with those that target the virus itself, seem to be promising prospects in curative CHB infection. Here, we systematically review the recent literature that elucidates cytokine and chemokine-mediated pathogenesis and immune exhaustion of HBV infection and their dynamics triggered by current mainstream anti-HBV therapy. The predictive value of disease progression or control and the immunotherapies target of specific major cytokines and chemokines in CHB infection will also be delineated.

18.
Front Immunol ; 12: 767000, 2021.
Article in English | MEDLINE | ID: mdl-34721439

ABSTRACT

Identification of immunogenic targets against hepatitis B virus (HBV)-encoded proteins will provide crucial advances in developing potential antibody therapies. In this study, 63 treatment-naïve patients with chronic HBV infection and 46 patients who achieved hepatitis B surface antigen loss (sAg loss) following antiviral treatment were recruited. Moreover, six patients who transitioned from the hepatitis B e antigen-positive chronic infection phase (eAg+CInf) to the hepatitis phase (eAg+CHep) were enrolled from real-life clinical practice. Additionally, telbivudine-treated eAg+CHep patients and relapsers or responders from an off-treatment cohort were longitudinally studied. The frequencies and function of B cells were assessed by flow cytometry. We devised a peptide array composed of 15-mer overlapping peptides of HBV-encoded surface (S), core (C), and polymerase (P) proteins and performed a screening on B-cell linear epitopes with sera. Naïve B cells and plasmablasts were increased, whereas total memory, activated memory (AM), and atypical memory (AtM) B cells were reduced in sAg- patients compared with sAg+ patients. Importantly, longitudinal observations found that AtM B cells were associated with successful treatment withdrawal. Interestingly, we identified six S-specific dominant epitopes (S33, S34, S45, S76, S78, and S89) and one C-specific dominant epitope (C37) that reacted with the majority of sera from sAg- patients. Of note, more B-cell linear epitopes were detected in CHep patients with alanine aminotransferase (ALT) flares than in nonflare CInf patients, and five B-cell linear epitopes (S4, S5, S10, S11, and S68) were overwhelmingly recognized by ALT flare patients. The recognition rates of epitopes on C and P proteins were significantly increased in CHep patients relative to CInf patients. Strikingly, a statistically significant elevation in the number of positive epitopes was observed when ALT nonflare patients shifted into the flare phase. Moreover, S76 identified at baseline was confirmed to be associated with a complete response after 48 weeks of telbivudine therapy. Taken together, we identified several functional cure-related B-cell linear epitopes of chronic HBV infection, and these epitopes may serve as vaccine candidates to elicit neutralizing antibodies to treat HBV infection.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Protein Array Analysis/methods , Adult , Antiviral Agents/therapeutic use , Cohort Studies , Cross-Sectional Studies , Epitope Mapping/methods , Female , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/drug effects , Hepatitis B virus/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Humans , Male , Middle Aged , Peptides/immunology , Peptides/metabolism , Protein Interaction Mapping/methods , Viral Proteins/immunology , Viral Proteins/metabolism , Young Adult
19.
Ann Transl Med ; 9(20): 1535, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34790741

ABSTRACT

BACKGROUND: It has been reported that atractylodin has a potential antitumor effect. This study aimed to investigate the effects of atractylodin on Huh7 and Hccm hepatocellular carcinoma (HCC) cells and its molecular mechanism. METHODS: Huh7 and Hccm cells were cultured in vitro, and their viability was detected by CCK-8 assay and the half inhibitory concentration (IC50) was calculated. The cells were treated with different concentrations of atractylodin, and the migration and invasion ability of cells was detected by scratch assay and Transwell assay. The cell cycle change and apoptosis rate were detected by flow cytometry. IlluminaHiSeq4000 platform was used for transcriptome sequencing, and the results were analyzed for gene differential expression, gene function, and signal pathway enrichment. Morphological changes of cells were detected by transmission electron microscopy, reactive oxygen species (ROS) levels were detected by DCFH-DA probe, and the expressions of ferroptosis related proteins GPX4, ACSL4, FTL, and TFR1 were detected by Western blot. RESULTS: The results showed that atractylodin could inhibit the proliferation, migration, and invasion of Huh7 and Hccm cells, regulate the cell cycle, and induce cell apoptosis and G1 phase cell cycle arrest. In addition, it could significantly induce the increase of intracellular ROS levels, decrease the expression of GPX4 and FTL proteins, and up-regulate the expression of ACSL4 and TFR1 proteins. CONCLUSIONS: Atractylodin can inhibit the proliferation, migration, and invasion of Huh7 and Hccm liver cancer cells, and induce cell apoptosis and cell cycle arrest. In addition, our results suggest that atractylodin may induce ferroptosis in HCC cells by inhibiting the expression of GPX4 and FTL proteins, and up-regulating the expression of ACSL4 and TFR1 proteins.

20.
Front Immunol ; 12: 649197, 2021.
Article in English | MEDLINE | ID: mdl-34234772

ABSTRACT

Persistent antigen exposure during chronic hepatitis B infection leads to exhausted immune responses, thus impeding viral control. In recent years, immunometabolism opens new therapeutic possibilities for the modulation of immune responses. Herein, we investigated the immunomodulatory effect of L-carnitine (L-Cn) on immune cells in chronic HBV infection. In this study, 141 treatment-naïve patients with chronic HBV infection, 38 patients who achieved HBsAg loss following antiviral treatment, and 47 patients who suffered from HBV-related HCC from real-life clinical practice were recruited. The plasma L-Cn levels were measured by ELISA. RNA sequencing was conducted to define the transcriptional profiles of peripheral blood mononuclear cells after L-Cn stimulation. In vitro assays were performed to assess the effect of L-Cn on immune cells; the frequencies and function of immune cells were analyzed by flow cytometry. We found that compared with patients with HBsAg loss, patients with HBsAg positivity and patients who suffered from HBV-related HCC had higher levels of L-Cn, and the plasma levels of L-Cn in the HBeAg-positive chronic hepatitis patients who had elevated ALT were significantly higher than that of HBeAg-negative chronic infection and HBsAg loss groups. Moreover, a positive correlation between plasma levels of L-Cn and HBsAg levels was found. Additionally, RNA sequencing analysis demonstrated that L-Cn altered the transcriptional profiles related to immune response. In vitro assays revealed that L-Cn suppressed the proliferation of and IFN-γ production by CD4+ and CD8+ T cells. It also down-regulated the proliferation and IgG production of B cells. Notably, L-Cn enhanced IL-10 secretion from regulatory T cells and up-regulated the expression of inhibitory receptors on T cells. Moreover, a variant in CPT2 (rs1799821) was confirmed to be associated with L-Cn levels as well as complete response in CHB patients following Peg-IFNα antiviral therapy. Taken together, the immunosuppressive properties of L-Cn may hinder the control of HBV in chronic HBV infection, implicating that L-Cn manipulation might influence the prognosis of patients with HBV infection.


Subject(s)
Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/immunology , Carnitine/blood , Hepatitis B, Chronic/immunology , Liver Neoplasms/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/virology , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cell Proliferation , Cross-Sectional Studies , Female , Hepatitis B e Antigens/blood , Hepatitis B e Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Humans , Liver Neoplasms/blood , Liver Neoplasms/drug therapy , Liver Neoplasms/virology , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...