Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 176
Filter
1.
Cell Genom ; : 100559, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38740021

ABSTRACT

The gut microbiome displays genetic differences among populations, and characterization of the genomic landscape of the gut microbiome in China remains limited. Here, we present the Chinese Gut Microbial Reference (CGMR) set, comprising 101,060 high-quality metagenomic assembled genomes (MAGs) of 3,707 nonredundant species from 3,234 fecal samples across primarily rural Chinese locations, 1,376 live isolates mainly from lactic acid bacteria, and 987 novel species relative to worldwide databases. We observed region-specific coexisting MAGs and MAGs with probiotic and cardiometabolic functionalities. Preliminary mouse experiments suggest a probiotic effect of two Faecalibacillus intestinalis isolates in alleviating constipation, cardiometabolic influences of three Bacteroides fragilis_A isolates in obesity, and isolates from the genera Parabacteroides and Lactobacillus in host lipid metabolism. Our study expands the current microbial genomes with paired isolates and demonstrates potential host effects, contributing to the mechanistic understanding of host-microbe interactions.

2.
Int Immunopharmacol ; 134: 112205, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718659

ABSTRACT

Current methods for delivering genes to target tumors face significant challenges, including off-target effects and immune responses against delivery vectors. In this study, we developed a novel approach using messenger RNA (mRNA) to encode IL11RA for local immunotherapy, aiming to harness the immune system to combat tumors. Our research uncovered a compelling correlation between IL11RA expression and CD8 + T cell levels across multiple tumor types, with elevated IL11RA expression correlating with improved overall survival. Examination of the Pan-Cancer Atlas dataset showed a significant reduction in IL11RA expression in various cancer types compared to normal tissue, raising questions about its potential role in tumorigenesis. To achieve efficient in vivo expression of IL11RA, we synthesized two mRNA sequences mimicking the wild-type protein. These mRNA sequences were formulated and capped to ensure effective delivery, resulting in robust expression within tumor sites. Our investigation into IL11RA mRNA therapy demonstrated its effectiveness in controlling tumor growth when administered both intratumorally and intravenously in mouse models. Additionally, IL11RA mRNA treatment significantly stimulated the expansion of CD8 + T cells within tumors, draining lymph nodes, and the spleen. Transcriptome analysis revealed distinct transcriptional patterns associated with T cell functions. Using multiple deconvolution algorithms, we found substantial infiltration of CD8 + T cells following IL11RA mRNA treatment, highlighting its immunomodulatory effects within the tumor microenvironment. In conclusion, IL11RA mRNA therapy presents a promising strategy for tumor regression with potential immunomodulatory effects and clinical implications for improved survival outcomes.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , RNA, Messenger , Animals , RNA, Messenger/genetics , RNA, Messenger/metabolism , Immunotherapy/methods , CD8-Positive T-Lymphocytes/immunology , Humans , Mice , Mice, Inbred C57BL , Cell Line, Tumor , Female , Interleukin-11 Receptor alpha Subunit/genetics , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/genetics , Tumor Microenvironment/immunology , Gene Expression Regulation, Neoplastic
3.
Molecules ; 29(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474660

ABSTRACT

In this study, novel amphiphilic polymer emulsifiers for avermectin (Avm) were synthesized facilely via the hydrolysis of ethylene-maleic anhydride copolymer (EMA) with different agents, and their structures were confirmed by various techniques. Then, water-based Avm-nanoemulsions were fabricated with the emulsifiers via phase inversion emulsification process, and superior emulsifier was selected via the emulsification effects. Using the superior emulsifier, an optimal Avm-nanoemulsion (defined as Avm@HEMA) with satisfying particle size of 156.8 ± 4.9 nm, encapsulation efficiency (EE) of 69.72 ± 4.01% and drug loading capacity (DLC) of 54.93 ± 1.12% was constructed based on response surface methodology (RSM). Owing to the emulsifier, the Avm@HEMA showed a series of advantages, including high stability, ultraviolet resistance, low surface tension, good spreading and high affinity to different leaves. Additionally, compared to pure Avm and Avm-emulsifiable concentrate (Avm-EC), Avm@HEMA displayed a controlled releasing feature. The encapsulated Avm was released quite slowly at normal conditions (pH 7.0, 25 °C or 15 °C) but could be released at an accelerated rate in weak acid (pH 5.5) or weak alkali (pH 8.5) media or at high temperature (40 °C). The drug releasing profiles of Avm@HEMA fit the Korsmeyer-Peppas model quite well at pH 7.0 and 25 °C (controlled by Fickian diffusion) and at pH 7.0 and 10 °C (controlled by non-Fickian diffusion), while it fits the logistic model under other conditions (pH 5.5 and 25 °C, pH 8.5 and 25 °C, pH 7.0 and 40 °C).

4.
J Cell Mol Med ; 28(6): e18175, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451044

ABSTRACT

The study aimed to identify the biomarkers for predicting coronary atherosclerotic lesions progression in patients with inflammatory bowel disease (IBD). Related transcriptome datasets were seized from Gene Expression Omnibus database. IBD-related modules were identified via Weighted Gene Co-expression Network Analysis. The 'Limma' was applied to screen differentially expressed genes between stable coronary artery disease (CAD) and acute myocardial infarction (AMI). Subsequently, we employed protein-protein interaction (PPI) network and three machine-learning strategies to further screen for candidate hub genes. Application of the receiver operating characteristics curve to quantitatively evaluate candidates to determine key diagnostic biomarkers, followed by a nomogram construction. Ultimately, we performed immune landscape analysis, single-gene GSEA and prediction of target-drugs. 3227 IBD-related module genes and 570 DEGs accounting for AMI were recognized. Intersection yielded 85 shared genes and mostly enriched in immune and inflammatory pathways. After filtering through PPI network and multi-machine learning algorithms, five candidate genes generated. Upon validation, CTSD, CEBPD, CYP27A1 were identified as key diagnostic biomarkers with a superior sensitivity and specificity (AUC > 0.8). Furthermore, all three genes were negatively correlated with CD4+ T cells and positively correlated with neutrophils. Single-gene GSEA highlighted the importance of pathogen invasion, metabolism, immune and inflammation responses during the pathogenesis of AMI. Ten target-drugs were predicted. The discovery of three peripheral blood biomarkers capable of predicting the risk of CAD proceeding into AMI in IBD patients. These identified biomarkers were negatively correlated with CD4+ T cells and positively correlated with neutrophils, indicating a latent therapeutic target.


Subject(s)
Coronary Artery Disease , Inflammatory Bowel Diseases , Myocardial Infarction , Humans , Coronary Artery Disease/genetics , Biomarkers , Computational Biology , Inflammatory Bowel Diseases/genetics , Machine Learning
5.
Cell Prolif ; : e13619, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444279

ABSTRACT

YT521-B homology (YTH) domain family (YTHDF) proteins serve as readers that directly recognise m6A modifications. In this study, we aim to probe the role of YTHDF1 in environmental carcinogen-induced malignant transformation of gastric cells and gastric cancer (GC) carcinogenesis. We established a long-term low-dose MNU-induced malignant transformation model in gastric epithelial cells. In vivo and in vitro experiments were conducted to validate the malignant phenotype and characterise the roles of YTHDF1 and its downstream genes in malignant transformation cells. Additionally, we explored downstream m6A modification targets of YTHDF1 using RNA-sequencing, RNA immunoprecipitation, and proteomics analyses, and conducted validation experiments in cell experiments and clinical samples. Long-term low-dose exposure of MNU converted normal Gges-1 cells into malignant cells. YTHDF1 mRNA and protein expression are increased in MNU-induced malignant cells (p<0.001). Meanwhile, YTHDF1 knockdown inhibits the malignant potential of MNU-treated cells (p<0.01). YTHDF1 knockdown specifically suppresses HSPH1 protein, but not RNA levels. RIP-qPCR validates HSPH1 is the target of YTHDF1 (p<0.01). HSPH1 knockdown impairs the malignant potential of MNU-induced transformed cells. The increased expression of the key regulatory factor YTHDF1 in MNU-induced gastric carcinogenesis affects malignant transformation and tumorigenesis by regulating the translation of downstream HSPH1. These findings provide new potential targets for preventing and treating environmental chemical-induced gastric carcinogenesis.

6.
Ann Vasc Surg ; 102: 92-100, 2024 May.
Article in English | MEDLINE | ID: mdl-38301851

ABSTRACT

BACKGROUND: To quantitatively analyze histological and fiber structure of the superior mesenteric artery (SMA) wall and to further explore the possible relationship between the architecture and histology changes of vessel wall and the occurrence of related diseases. METHODS: Histological and fiber structure analysis were performed on SMA specimens obtained from 22 cadavers. The SMA specimens were divided into initial, curved, and distal segments, and each segment was separated into the anterior and posterior walls. RESULTS: From the initial to the curved to the distal segment, the ratio of elastin decreased (31.4% ± 6.0%, 21.1% ± 5.8%, 18.6% ± 4.7%, respectively; P < 0.001), whereas the ratio of smooth muscle actin (24.5% ± 8.7%, 30.5% ± 6.8%, 36.1% ± 7.3%, respectively; P < 0.001) increased. Elastic fiber longitudinal amplitude of angular undulation was highest in the initial segment [7° (3.25°, 15°)] and lowest in the curved segment [2° (1°, 5°)]. In SMA curved segment, the anterior wall, when compared with the posterior wall, demonstrated a lower ratio of elastin (19.0% ± 5.8% vs. 23.3% ± 5.0%; P = 0.010) and collagen (41.4% ± 12.3% vs. 49.0% ± 10.2%; P = 0.032), a lower elastic fiber longitudinal amplitude of angular undulation [1° (1°, 5°) vs. 3° (2°, 5.25°); P = 0.013], a lower average fiber diameter (8.06 ± 0.36 pixels vs. 8.45 ± 0.50 pixels; P = 0.005), and a lower average segment length (17.96 ± 1.59 pixels vs. 20.05 ± 2.33 pixels; P = 0.001). CONCLUSIONS: SMA wall structure varies along the circumferential and axial directions, the presence of dense undulated elastic fiber protects the SMA initial segment of from dissection and aneurysm, but highly cross-linked collagen fiber here increases the likelihood of plaque formation. In the anterior wall of the curved segment, lower elastin and collagen content, lower elastic fiber undulation, and higher degree of collagen fiber cross-linking leads to the occurrence of SMA dissection and aneurysm. In the distal segment, high levels of vascular smooth muscle cells and bundles of long collagen fiber offer protection against the development of SMA-related diseases.


Subject(s)
Aneurysm , Mesenteric Artery, Superior , Humans , Mesenteric Artery, Superior/diagnostic imaging , Treatment Outcome , Elastin , Collagen
8.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365257

ABSTRACT

The colonization of microbes in the gut is key to establishing a healthy host-microbiome symbiosis for newborns. We longitudinally profiled the gut microbiome in a model consisting of 36 neonatal oxen from birth up to 2 months postpartum and carried out microbial transplantation to reshape their gut microbiome. Genomic reconstruction of deeply sequenced fecal samples resulted in a total of 3931 metagenomic-assembled genomes from 472 representative species, of which 184 were identified as new species when compared with existing databases of oxen. Single nucleotide level metagenomic profiling shows a rapid influx of microbes after birth, followed by dynamic shifts during the first few weeks of life. Microbial transplantation was found to reshape the genetic makeup of 33 metagenomic-assembled genomes (FDR < 0.05), mainly from Prevotella and Bacteroides species. We further linked over 20 million microbial single nucleotide variations to 736 plasma metabolites, which enabled us to characterize 24 study-wide significant associations (P < 4.4 × 10-9) that identify the potential microbial genetic regulation of host immune and neuro-related metabolites, including glutathione and L-dopa. Our integration analyses further revealed that microbial genetic variations may influence the health status and growth performance by modulating metabolites via structural regulation of their encoded proteins. For instance, we found that the albumin levels and total antioxidant capacity were correlated with L-dopa, which was determined by single nucleotide variations via structural regulations of metabolic enzymes. The current results indicate that temporal colonization and transplantation-driven strain replacement are crucial for newborn gut development, offering insights for enhancing newborn health and growth.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Infant, Newborn , Humans , Female , Gastrointestinal Microbiome/physiology , Nucleotides , Levodopa , Feces , Metagenomics/methods
10.
Crit Rev Anal Chem ; : 1-17, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234139

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.

11.
Transl Oncol ; 41: 101858, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242006

ABSTRACT

ALKBH5 plays critical roles in various cellular processes via post-transcriptional regulation of oncogenes or tumor suppressors in an N6-methyladenosine (m6A)-dependent manner. However, its function in intrahepatic cholangiocarcinoma (ICC) remains unclear. In the present study, bioinformatic analyses of The Cancer Genome Atlas (TCGA) data were performed, and the association of ALKBH5 in predicting overall survival in patients with ICC was investigated. Then, the clinical data of patients from The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University (Changzhou, China) was used to reveal the overall survival of patients with ICC with different ALKBH5 expression levels by Kaplan-Meier survival analysis. Subsequently, in vitro and in vivo studies were conducted to explore and verify the downstream genes regulated by ALKBH5. The results from TCGA data demonstrated that ALKBH5 expression is elevated in ICC and that patients with high ALKBH5 expression exhibited poor survival compared with patients with low expression. In addition, in vitro assays demonstrated that ALKBH5 promoted cell viability and maintained the stemness of ICC cells, leading to ICC progression. The present study also demonstrated that BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is the downstream gene regulated by ALKBH5 and targeting BUB1B suppressed cell growth. The in vitro and vivo experiments revealed that ALKBH5 might function through BUB1B to maintain the stemness of ICC and that altering BUB1B may suppress ICC progression.

12.
J Ethnopharmacol ; 323: 117673, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158096

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY: The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS: Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS: Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION: Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.


Subject(s)
Melanins , Melanosomes , Animals , Mice , Humans , Melanins/metabolism , Melanosomes/metabolism , Zebrafish , Monophenol Monooxygenase/metabolism , Melanogenesis , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Melanocytes , Cyclic AMP/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor
13.
Diabetol Metab Syndr ; 15(1): 254, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057836

ABSTRACT

OBJECTIVE: To evaluate subclinical LV systolic dysfunction in obese patients by global myocardial work (MW). METHODS: A total of 589 obese patients and 100 normal controls were enrolled in the study. The global longitudinal strain (GLS), global work index (GWI), global constructive work (GCW), global wasted work (GWW) and global work efficiency (GWE) were generated by a noninvasive pressure-strain loop (PSL) in apical 3-, 4- and 2-chamber views acquired by two-dimensional echocardiography. All obese patients were divided into three groups: class I obesity (mild) 30-35 kg/m2, class II obesity (moderate) 35-40 kg/m2 and class III obesity (severe) > 40 kg/m2. These values were compared among the three groups. The independent influencing factors of subclinical LV systolic dysfunction in obese patients were explored by constructing a multiple regression model. ROC analysis was performed to determine the performance of MW to detect subclinical LV systolic dysfunction in obese patients. RESULTS: The absolute value of GLS in obese patients was significantly lower than that in normal controls (P < 0.001). The values of GWI, GCW, GWE and GCW/GWW in obese patients were significantly lower than those in normal controls (P < 0.05), while GWW was significantly larger than that in normal controls (P < 0.001). Subgroup analysis and trend analysis showed that the values of GWI, GCW, GWE and GCW/GWW in severe obese patients were lower than those in moderate obese patients and lower than those in mild obese patients (P < 0.01), while GWW in severe obese patients was larger than that in moderate obese patients and larger than that in mild obese patients (P < 0.05). Female sex, BMI and SBP were independent influencing factors of impaired GWI (ß = 0.15, P < 0.001) (ß=-0.18, P < 0.001) (ß = 0.50, P < 0.001) and GCW (ß = 0.17, P < 0.001) (ß=-0.19, P < 0.001) (ß = 0.57, P < 0.001). ROC analysis showed that the AUC of the combined global MW was significantly higher than the AUCs of the individual indices (P < 0.05). CONCLUSION: In this study, we conclude that subclinical LV systolic dysfunction was detected by the novel global MW technique in obese patients. Elevated BMI in obese patients results in an increased risk of subclinical LV systolic dysfunction, although the LVEF is normal. Controlling BMI in obese patients may reduce the impairment to the LV myocardial systolic function. Global MW is a novel and reproducible technique that can be well applied in the clinical evaluation of subclinical LV systolic dysfunction.

15.
Toxics ; 11(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37888693

ABSTRACT

Early-life exposure to environmental neurotoxicants is known to have lasting effects on organisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which were exposed once during early life stage and re-exposure at adulthood, were created to explore the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders. Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to single exposure during different life stages. Collectively, early-life exposure to PQ can result in irreversible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced non-motor neurobehavioral deficits.

16.
Adv Sci (Weinh) ; 10(35): e2303975, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875398

ABSTRACT

Lung cancer is the leading cause of death among all cancers. A persistent chronic inflammatory microenvironment is highly correlated with lung cancer. However, there are no anti-inflammatory agents effective against lung cancer. Cytochrome P450 2E1 (CYP2E1) plays an important role in the inflammatory response. Here, it is found that CYP2E1 is significantly higher in the peritumoral tissue of non-small cell lung cancer (NSCLC) patients and lung tumor growth is significantly impeded in Cyp2e1-/- mice. The novel CYP2E1 inhibitor Q11, 1-(4-methyl-5-thialzolyl) ethenone, is effective in the treatment of lung cancer in mice, which can inhibit cancer cells by changing macrophage polarization rather than directly act on the cancer cells. It is also clarify that the benefit of Q11 may associated with the IL-6/STAT3 and MAPK/ERK pathways. The data demonstrate that CYP2E1 may be a novel inflammatory target and that Q11 is effective on lung cancer by regulation of the inflammatory microenvironment. These findings provide a molecular basis for targeting CYP2E1 and illustrate the potential druggability of the CYP2E1 inhibitor Q11.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Cytochrome P-450 CYP2E1/metabolism , Inflammation/drug therapy , Lung Neoplasms/drug therapy , MAP Kinase Signaling System , Tumor Microenvironment
17.
Clin Transl Med ; 13(9): e1405, 2023 09.
Article in English | MEDLINE | ID: mdl-37679886

ABSTRACT

BACKGROUND: The roles of circRNA and N6-methyladenosine (m6 A) methylation in Crohn's disease (CD) have drawn much attention. Therefore, this investigation aimed to discover how the m6 A modification of circRNAs contributes to CD progression. METHODS: The study performed circRNA sequencing on colon samples from four CD patients and four normal controls (NCs) to screen for dysregulated circRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the candidate circRNA expression and determine its correlation to CD-associated inflammatory indicators. In vivo and in vitro investigations were conducted to examine the functions and pathways of circPRKAR1B in CD, besides investigating the m6 A modification role in circRNA expression modulation. RESULTS: The RNA-seq revealed that hsa_circ_0008039 (circPRKAR1B) was the most significant upregulated circRNA and was identified as the candidate circRNA for further examinations. Relative circPRKAR1B expression was significantly upregulated in CD colon tissues and closely related to CD-associated inflammatory indices. The circPRKAR1B expression and function were regulated by methyltransferase-like 3 (METTL3)-mediated m6 A methylation. In vitro studies indicated that circPRKAR1B promoted pyroptosis mediated by NLRP3 inflammasome (NLRP3; nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3) and impaired autophagy by interacting with the RNA-binding protein (RBP) SPTBN1, (SPTBN1; spectrin beta, non-erythrocytic 1). The in vivo investigations revealed the treatment effects of si-circPRKAR1B and si-METTL3 in colitis models of IL-10-deficient mice. CONCLUSION: Our study reveals that METTL3-mediated m6 A modification of circPRKAR1B promotes Crohn's colitis by aggravating NLRP3 inflammasome-mediated pyroptosis via autophagy impairment in colonic epithelial cells.


Subject(s)
Colitis , Crohn Disease , Animals , Mice , Autophagy/genetics , Colitis/genetics , Crohn Disease/genetics , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis/genetics , RNA, Circular/genetics
18.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687078

ABSTRACT

To overcome the shortcomings of the temperature sensitivity of exterior flexible facing tiles (EFFIs), a series of crosslinking carboxylic styrene-acrylate (SA) latices were prepared via the semicontinuous seed emulsion polymerization of glycidyl methacrylate (GMA), methacrylic acid (MAA), acrylic acid (AA), butyl acrylate (BA), and styrene (St), and were applied as binders to fabricate EFFTs with mineral powder. The obtained latices exhibited Bragg diffraction because of the narrow particle size distribution. Owing to the low dosage of emulsifiers and the crosslinking reaction between the epoxy group and the carboxyl group, the latex films displayed excellent water resistance, with water adsorption as low as 7.1%. The tensile test, differential scanning calorimeter (DSC) test, and dynamic mechanical analysis (DMA) indicated that at a GMA dosage of 4-6% the latex films had high mechanical strengths, which remained relatively stable in the temperature range of 10 to 40 °C. The optimal AA dosage was found in the range of 2 to 3%, at which the wet mixture exhibited good processability, conducive to forming an EFFT with a compact microstructure. Using the optimal SA latex, the obtained EFFT displayed a series of improved performances, including low water absorption, high mechanical strength, and stable self-supporting ability over a wide temperature range, exhibiting the application potential in the decoration and construction industries.

19.
iScience ; 26(10): 107756, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37692283

ABSTRACT

Circular RNA (circRNA) is a special category of non-coding RNA that has garnered increasing attention in the exploration of lipid metabolism. However, the functional regulation mechanisms of circRNAs in obesity diseases remain unclear. By whole transcriptome sequencing, a total of 164 circular RNAs were found to exhibit differential expression between lean and obese individuals. RT-qPCR was used to detect significant expression of circMAPK9 in obese individuals, and it was closely related to BMI. Western blot, triglyceride detection, and Oil Red O staining were employed to investigate the role of circMAPK9/hsa-miR-1322/FTO in adipogenesis. In adipocytes, the connection between hsa-miR-1322 and circMAPK9 was verified using fluorescence in situ hybridization, luciferase reporter assay, and RNA immunoprecipitation. It was found that circMAPK9 competed for binding hsa-miR-1322 in the cytoplasm, weakening the inhibitory effect on FTO and promoting adipogenesis. Our study revealed the regulatory mechanism and important role of circMAPK9 in the process of adipogenesis.

20.
J Biomol Struct Dyn ; : 1-12, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37449753

ABSTRACT

Marfan syndrome (MFS) is a hereditary disease with high mortality. This study aimed to explore peripheral blood potential markers and underlying mechanisms in MFS via a series bioinformatics and machine learning analysis. First, we downloaded two MFS datasets from the GEO database. A total of 215 differentially expressed genes (DEGs) and 78 differentially expressed miRNAs (DEMs) were identified via "Limma" package. 60 DEGs, mainly enriched in abnormal transportation of structure and energy substances, were selected after protein-protein interaction (PPI) network construction, of which 20 were chosen for machine learning after three algorithms (betweenness, closeness, and degree) filtration using Cytoscape. Four overlapping DEGs (ACTN1, CFTR, GCKR, LAMA3) were finally selected as the candidate markers based on three machine-learning approaches (Lasso, random forest, and support vector machine-recursive feature elimination). Furthermore, we collected peripheral blood from MFS patients and healthy control to validate the findings and the results showed that compared with the control, the expression of the four DEGs was all statistically different in MFS patients validated by qRT-PCR. Besides, the area under the receiver operating characteristics curve was greater than 0.8 for each DEG. Single-sample gene-set enrichment analysis showed that the four DEGs were strongly associated with inflammation and myogenesis pathway. Finally, we constructed the mRNA-miRNA network based on the intersection of DEMs and predicted miRNAs targeting DEGs. In conclusion, our study partially provided four potential markers for MFS pathogenesis.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL
...