Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 193: 116851, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33540343

ABSTRACT

This study investigated the mechanisms of mixed IO3-/I- system under UV irradiation in drinking water and compared the iodinated trihalomethanes (I-THMs) formation of a mixed IO3-/I- system to that of single I- and IO3- systems during subsequent chloramination. The effects of initial I-/IO3- molar ratio, pH, and UV intensity on a mixed IO3-/I- system were studied. The introduction of I- enhanced the conversion rate of IO3- to reactive iodine species (RIS). Besides, IO3- degradation rate increased with the increase of initial I- concentration and UV intensity and the decrease of pH value. In a mixed IO3-/I- system, IO3- could undergo direct photolysis and photoreduction by hydrated electron (eaq-). Moreover, the enhancement of I-THM formation in a mixed IO3-/I- system during subsequent chloramination was observed. The I-THM yields in a mixed IO3-/I- system were higher than the sum of I-THMs produced in a single IO3- and I- systems at all the evaluated initial I- concentrations and pH values. The difference between I-THM formation in a mixed IO3-/I- system and the sum of I-THMs in a single IO3- and I- systems increased with the increase of initial I- concentration. As the initial pH decreased from 9 to 5, the difference of I-THM yields enhanced, while the total I-THM yield of a mixed IO3-/I- system and single I- and IO3- systems decreased slightly. Besides, IO3--I--containing water with DOC concentration of 2.5-4.5 mg-C/L, which mainly contained humic-acid substances, had a higher risk in I-THMs formation than individual I--containing and IO3--containing water.


Subject(s)
Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Iodates , Iodides , Photolysis , Trihalomethanes/analysis , Water , Water Pollutants, Chemical/analysis
2.
Int Heart J ; 62(1): 148-152, 2021.
Article in English | MEDLINE | ID: mdl-33518653

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is erupting and spreading globally. Cardiovascular complications secondary to the infection have caught notice. This study aims to delineate the relationship of cardiac biomarkers and outcomes in severe cases of corona virus disease 2019 (COVID-19). One hundred forty-eight critically ill adult patients with COVID-19 were enrolled. From these patients, the demographic data, symptoms, cardiac biomarkers, treatments, and clinical outcomes were collected. Data were compared between survivors and non-survivors. Four patients in the non-survivor group were selected, and their cardiac biomarkers were collected and analyzed. Among the 148 patients, the incidence of cardiovascular complications was 19 (12.8%). Five of them were survivors (5.2%), and 14 of them were non-survivors (26.9%). Compared with the survivors, the non-survivors had higher levels of high-sensitivity cardiac troponin I, creatine kinase isoenzyme-MB, myoglobin, and N-terminal pro-brain natriuretic peptide (P < 0.05). The occurrence of cardiovascular events began at 11-15 days after the onset of the disease and reached a peak at 14-20 days. COVID-19 not only is a respiratory disease but also causes damage to the cardiovascular system. Cardiac biomarkers have the potential for early warning and prognostic evaluation in patients with COVID-19. It is recommended that cardiac biomarker monitoring in patients with COVID-19 should be initiated at least from the 11th day of the disease course.


Subject(s)
Biomarkers/metabolism , COVID-19/complications , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Adult , Aged , Atrial Natriuretic Factor/metabolism , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Cardiovascular Diseases/epidemiology , Case-Control Studies , China/epidemiology , Creatine Kinase, MB Form/metabolism , Critical Illness/mortality , Critical Illness/nursing , Female , Humans , Incidence , Male , Middle Aged , Prognosis , Protein Precursors/metabolism , SARS-CoV-2/genetics , Survival Rate , Survivors/statistics & numerical data , Troponin I/metabolism
3.
Water Sci Technol ; 76(5-6): 1140-1149, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28876255

ABSTRACT

In this paper, high value added NaA zeolite material was prepared from blast furnace (BF) slag by hydrothermal method and its adsorption behavior on the removal of ammonium ion was investigated. It was found out that the synthetic NaA cubic zeolite with smaller crystal size obtained at nSiO2/nAl2O3 = 2 and nH2O/nNaOH = 20 showed better adsorption performance. The kinetics of the adsorption of ammonium ion by synthesized NaA zeolite was fitted by the pseudo-second-order kinetic model. The intra-particle diffusion modeling reveals that two mixed rate-controlling mechanisms were involved in the adsorption process. The relatively high value of activation energy of 92.3 kJ·mol-1 indicates a high impact of temperature on the adsorption rate, and the nature of ammonium adsorption is chemical reaction rather than physisorption. Based on the thermodynamics calculations, the adsorption of ammonium was found to be an endothermic, spontaneous process. The adsorption isothermal analysis showed that the Langmuir model could be well fitted and a maximum adsorption capacity of 83.3 mg·g-1 of NH4+ was obtained. Thus, it was demonstrated that by forming low cost NaA zeolite and using it for environmental remediation, the synchronous minimization of BF slag and ammonia nitrogen contamination could be achieved.


Subject(s)
Ammonium Compounds/chemistry , Water Pollutants, Chemical/chemistry , Zeolites/chemistry , Adsorption , Industrial Waste , Kinetics , Temperature , Thermodynamics , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...