Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 132172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719009

ABSTRACT

Adjuvants including aluminum adjuvant (Alum) and oil-water emulsion have been widely used in inactivated pseudorabies virus (PRV) vaccines to improve their performance, however, they are not sufficient to protect from PRV infection because of the weak immune response and poor Th1-type immune response. Divalent manganese ion (Mn2+) has been reported to increase the cellular immune response significantly. In this work, a xanthan gum and carbomer-dispersed Mn2+-loaded tannic acid-polyethylene glycol (TPMnXC) nanoparticle colloid is developed and used as an adjuvant to improve the performance of the inactivated PRV vaccine. The good in vitro and in vivo biocompatibility of the developed TPMnXC colloid has been confirmed by the cell viability assay, erythrocyte hemolysis, blood routine analysis, and histological analysis of mouse organs and injection site. The TPMnXC-adjuvanted inactivated PRV vaccine (TPMnXC@PRV) significantly promotes higher and more balanced immune responses indicating with an increased specific total IgG antibody and IgG2a/IgG1 ratio, efficient splenocytes proliferation, and elevated Th1- and Th2-type cytokine secretion than those of control groups. Wild PRV challenge experiment is performed using mice as a model animal, achieving a protection rate of up to 86.67 %, which is much higher than those observed from the commercial Alum. This work not only demonstrates the high potentiality of TPMnXC in practical applications but also provides a new way to develop the Mn2+-loaded nanoadjuvant for veterinary vaccines.


Subject(s)
Adjuvants, Immunologic , Herpesvirus 1, Suid , Immunity, Cellular , Immunity, Humoral , Manganese , Nanoparticles , Polysaccharides, Bacterial , Tannins , Animals , Mice , Adjuvants, Immunologic/pharmacology , Nanoparticles/chemistry , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Tannins/chemistry , Tannins/pharmacology , Manganese/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/immunology , Herpesvirus 1, Suid/immunology , Pseudorabies Vaccines/immunology , Vaccines, Inactivated/immunology , Pseudorabies/prevention & control , Pseudorabies/immunology , Female , Cytokines/metabolism , Mice, Inbred BALB C , Antibodies, Viral/blood , Antibodies, Viral/immunology , Polyphenols
2.
Parasit Vectors ; 15(1): 347, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175964

ABSTRACT

BACKGROUND: It has been reported that the NF-κB pathway, an important component of host defense system against pathogens infections, can be differentially modulated by different Toxoplasma gondii strains, depending on the polymorphism of the GRA15 protein. The recently isolated Toxoplasma strain T.gHB1 is a type 1 (ToxoDB#10) strain but shows different virulence determination mechanisms compared to the classic type 1 strains like RH (ToxoDB#10). Therefore, it is worth investigating whether the T.gHB1 strain (ToxoDB#10) affects the host NF-κB signaling pathway. METHODS: The effects of T.gHB1 (ToxoDB#10) on host NF-κB pathway were investigated in HEK293T cells. The GRA15 gene product was analyzed by bioinformatics, and its effect on NF-κB activation was examined by Western blotting and nuclear translocation of p65. Different truncations of T.gHB1 GRA15 were constructed to map the critical domains for NF-κB activation. RESULTS: We demonstrated that the NF-κB pathway signaling pathway could be activated by the newly identified type 1 T.gHB1 strain (ToxoDB#10) of Toxoplasma, while the classic type 1 strain RH (ToxoDB#10) did not. T.gHB1 GRA15 possesses only one transmembrane region with an extended C terminal region, which is distinct from that of classic type 1 (ToxoDB#10) and type 2 (ToxoDB#1) strains. T.gHB1 GRA15 could clearly induce IκBα phosphorylation and p65 nuclear translocation. Dual luciferase assays in HEK293T cells revealed a requirement for 194-518 aa of T.gHB1 GRA15 to effectively activate NF-κB. CONCLUSIONS: The overall results indicated that the newly isolated type 1 isolate T.gHB1 (ToxoDB#10) had a unique GRA15, which could activate the host NF-κB signaling through inducing IκBα phosphorylation and p65 nuclear translocation. These results provide new insights for our understanding of the interaction between Toxoplasma parasites and its hosts.


Subject(s)
NF-kappa B , Protozoan Proteins , Toxoplasma , HEK293 Cells , Humans , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...