Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biotechnol ; 61(10): 715-724, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31350687

ABSTRACT

Biomolecules produced by living organisms can perform vast array of functions and play an important role in the cell. Important biomolecules such as lysozyme, bovine serum albumin (BSA), and bromelain are often studied by researchers due to their beneficial properties. The application of reverse micelles is an effective tool for protein separation from their sources due to the special system structure. Mechanisms of transferring biomolecules and factors that influence the extraction of biomolecules are reviewed in this paper. The enhancement of biomolecule extraction could be achieved depending on the properties of reverse micelles. This paper provides an overall review on lysozyme, BSA, and bromelain extraction by reverse micelle for various applications.


Subject(s)
Bromelains/isolation & purification , Muramidase/isolation & purification , Serum Albumin, Bovine/isolation & purification , Animals , Cattle , Chemical Fractionation , Hydrogen-Ion Concentration , Micelles , Surface-Active Agents/chemistry
2.
Int J Biol Macromol ; 132: 615-628, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30940588

ABSTRACT

In this work, a chitosan-modified nanofiber membrane was fabricated and used to examine the permeation characteristics of C-phycocyanin (CPC) obtained from Spirulina platensis. The effects of NaCl concentration (0.1-1.0 M), chitosan coupling pH (6-8), chitosan coupling concentration (0.1-3.0%), algal solution pH (6-8), algal mass concentration (0.1-1.0% dw/v), and membrane flux (4.08 × 10-2-2.04 × 10-1 mL/min·cm2) on the penetration performance of the membrane for CPC were investigated. The results show that the order of binding selectivity of the membrane for these proteins is contaminating proteins (TP) > allophycocyanin (APC) > CPC. TP and APC molecules were more easily adsorbed by the chitosan-modified membrane, and the CPC molecules most easily penetrated the membrane without being adsorbed, enhancing CPC purity. The purification factor and total mass flux were 3.3 fold and 66%, respectively, in a single step.


Subject(s)
Chitosan/chemistry , Chromatography/methods , Membranes, Artificial , Nanofibers/chemistry , Phycocyanin/isolation & purification , Hydrogen-Ion Concentration , Phycocyanin/chemistry , Sodium Chloride/chemistry , Spirulina/chemistry , Surface Properties
3.
Int J Mol Sci ; 18(1)2017 Jan 22.
Article in English | MEDLINE | ID: mdl-28117737

ABSTRACT

Microalgae contribute up to 60% of the oxygen content in the Earth's atmosphere by absorbing carbon dioxide and releasing oxygen during photosynthesis. Microalgae are abundantly available in the natural environment, thanks to their ability to survive and grow rapidly under harsh and inhospitable conditions. Microalgal cultivation is environmentally friendly because the microalgal biomass can be utilized for the productions of biofuels, food and feed supplements, pharmaceuticals, nutraceuticals, and cosmetics. The cultivation of microalgal also can complement approaches like carbon dioxide sequestration and bioremediation of wastewaters, thereby addressing the serious environmental concerns. This review focuses on the factors affecting microalgal cultures, techniques adapted to obtain high-density microalgal cultures in photobioreactors, and the conversion of microalgal biomass into biofuels. The applications of microalgae in carbon dioxide sequestration and phycoremediation of wastewater are also discussed.


Subject(s)
Biofuels/microbiology , Biotechnology/methods , Microalgae/metabolism , Biomass
4.
Nanotechnology ; 27(33): 332002, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27396920

ABSTRACT

It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.

5.
J Nanosci Nanotechnol ; 14(5): 3398-402, 2014 May.
Article in English | MEDLINE | ID: mdl-24734558

ABSTRACT

Here we report our findings on the removal of metallic single-walled carbon nanotubes using an aqueous two-phase system. The aqueous two-phase system contained as received carbon nanotubes, polyethylene glycol, dextran, N-methylpyrrolidone, cetyltrimethylammonium bromide, and water which phase separated into top and bottom phases. The top phase was dominated by polyethylene glycol whereas the bottom phase was dominated by dextran. The dextran-rich phase contained more semiconducting species while metallic species was more abundant in the polyethylene glycol rich-phase. It was found via Fourier-Transform Infrared Spectroscopy that cetyltrimethylammonium bromide only present in the dextran-rich phase. A selectivity mechanism is tentatively proposed and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...