Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 8: 720, 2017.
Article in English | MEDLINE | ID: mdl-28690611

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects females three times more frequently than males. A potential role for hormones, such as prolactin (PRL), may in part explain this phenomenon. The risk of developing RA is increased in women who are lactating after the first pregnancy, which might be related to breastfeeding and the release of PRL. Other studies found a protective effect of PRL on RA development. Some studies have reported that hyperprolactinemia is more common in RA and serum PRL levels are correlated with several disease parameters, although others could not confirm these findings. Overall the plasma PRL levels are on average not elevated in RA. Previously, a small number of open-label clinical trials using bromocriptine, which indirectly decreases PRL levels, were performed in RA patients and showed clinical benefit, although others found the opposite effect. Locally produced PRL at the site of inflammation may have a crucial role in RA as well, as it has been shown that PRL can be produced by synovial macrophages. Locally produced PRL has both pro-inflammatory and anti-inflammatory effects in arthritis. Psoriatic arthritis (PsA) is also an autoinflammatory disease, in which the prolactin receptor is also expressed in macrophages. The aim of this review is to provide an overview of the potential role of PRL signaling in inflammatory joint diseases (RA and PsA) and its potential as a therapeutic target.

2.
Arthritis Res Ther ; 16(4): 426, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25146432

ABSTRACT

INTRODUCTION: Accumulating evidence suggests an important role for interleukin 17 (IL-17) in the pathogenesis of several inflammatory diseases, including rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Accordingly, clinical trials aimed at blocking IL-17 have been initiated, but clinical results between patients and across different diseases have been highly variable. The objective was to determine the variability in expression of IL-17A, IL-17F and their receptors IL-17RA and IL-17RC in the synovia of patients with arthritis. METHODS: Synovial biopsies were obtained from patients with RA (n = 11), PsA (n = 15) and inflammatory osteoarthritis (OA, n = 14). For comparison, synovia from noninflamed knee joints (n = 7) obtained from controls were included. Frozen sections were stained for IL-17A, IL-17F, IL-17RA and IL-17RC and evaluated by digital image analysis. We used confocal microscopy to determine which cells in the synovium express IL-17A and IL-17F, double-staining with CD4, CD8, CD15, CD68, CD163, CD31, von Willebrand factor, peripheral lymph node address in, lymphatic vessel endothelial hyaluronan receptor 1, mast cell tryptase and retinoic acid receptor-related orphan receptor γt (RORγt). RESULTS: IL-17A, IL-17F, IL-17RA and IL-17RC were abundantly expressed in synovial tissues of all patient groups. Whereas IL-17RA was present mostly in the synovial sublining, IL-17RC was abundantly expressed in the intimal lining layer. Digital image analysis showed a significant (P < 0.05) increase of only IL-17A in arthritis patients compared to noninflamed control tissues. The expression of IL-17A, IL-17F and their receptors was similar in the different patient groups, but highly variable between individual patients. CD4+ and CD8+ cells coexpressed IL-17A, and few cells coexpressed IL-17F. IL-17A and IL-17F were not expressed by CD15+ neutrophils. Mast cells were only occasionally positive for IL-17A or IL-17F. Interestingly, IL-17A and IL-17F staining was also observed in macrophages, as well as in blood vessels and lymphatics. This staining probably reflects receptor-bound cytokine staining. Many infiltrated cells were positive for the transcription factor RORγt. Colocalisation between RORγt and IL-17A and IL-17F indicates local IL-17 production. CONCLUSIONS: Increased expression of IL-17A is not restricted to synovial tissues of RA and PsA patients; it is also observed in inflammatory OA. The heterogeneous expression levels may explain nonresponse to anti-IL-17 therapy in subsets of patients.


Subject(s)
Arthritis, Psoriatic/metabolism , Arthritis, Rheumatoid/metabolism , Interleukin-17/biosynthesis , Osteoarthritis/metabolism , Adult , Aged , Antirheumatic Agents/therapeutic use , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Female , Fluorescent Antibody Technique , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Interleukin-17/analysis , Male , Microscopy, Confocal , Middle Aged , Osteoarthritis/drug therapy , Osteoarthritis/immunology , Receptors, Interleukin-17/analysis , Receptors, Interleukin-17/biosynthesis , Synovial Membrane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...