Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36901044

ABSTRACT

Selenium (Se) enrichments or deficiency in maize (Zea mays L.), one of the world's most important staple foods and livestock feeds, can significantly affect many people's diets, as Se is essential though harmful in excess. In particular, Se-rich maize seems to have been one of the factors that led to an outbreak of selenosis in the 1980s in Naore Valley in Ziyang County, China. Thus, this region's geological and pedological enrichment offers some insight into the behavior of Se in naturally Se-rich crops. This study examined total Se and Se species in the grains, leaves, stalks, and roots of 11 maize plant samples, Se fractions of soils around the rhizosphere, and representative parent rock materials from Naore Valley. The results showed that total Se concentrations in the collected samples were observed in descending order of soil > leaf > root > grain > stalk. The predominant Se species detected in maize plants was SeMet. Inorganic Se forms, mainly Se(VI), decreased from root to grain, and were possibly assimilated into organic forms. Se(IV) was barely present. The natural increases of Se concentration in soils mainly affected leaf and root dry-weight biomasses of maize. In addition, Se distribution in soils markedly correlated with the weathered Se-rich bedrocks. The analyzed soils had lower Se bioavailability than rocks, with Se accumulated predominantly as recalcitrant residual Se. Thus, the maize plants grown in these natural Se-rich soils may uptake Se mainly from the oxidation and leaching of the remaining organic-sulfide-bound Se fractions. A viewpoint shift from natural Se-rich soils as menaces to possibilities for growing Se-rich agricultural products is also discussed in this study.


Subject(s)
Selenium , Soil , Zea mays , Humans , Agriculture , Biological Availability , Edible Grain , Selenium/analysis , Soil/chemistry , Zea mays/chemistry
2.
Environ Sci Pollut Res Int ; 28(8): 9657-9669, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33151491

ABSTRACT

Evaluating the bioaccumulation and health risk of heavy metals in soil-crop systems is essential in Liujiang karst regions. In the current study, the single and comprehensive uptake effects of heavy metals (i.e., Cu, Cr, Cd, As, and Zn) between rice and sugarcane and their rhizosphere soils were investigated. The estimated daily ingestion (EDI), target hazard quotient (THQ), and hazard index (HI) were estimated for health risk assessments. The results showed that the mean contents of Cu, Cr, Cd, As, and Zn in rice soils were 25.8, 168, 1.91, 20.0, and 160 mg/kg, respectively, and those in sugarcane soils were 28.8, 186, 0.44, 31.0, and 108 mg/kg. Rice soils were mainly contaminated by Cd, and Cd and Cr were the main pollutants in sugarcane soils. The average concentrations of Cu, Cr, Cd, As, and Zn in rice grains were 1.79, 0.15, 0.16, 0.11, and 12.7 mg/kg, respectively, and in sugarcanes were 0.10, 0.036, 0.022, 0.006, and 0.38 mg/kg. Both crops tended to take up Cd more effectively, and rice grains exhibited higher accumulation capacities of heavy metals in edible part than sugarcanes. Prediction models of Cd and comprehensive accumulation factors were established for rice and sugarcane, and different soil factors affect metal accumulation in crops cultivated in different types. Due to the exposure to As and Cd through rice consumption, non-carcinogenic risks are likely to occur in Liujiang residents.


Subject(s)
Metals, Heavy , Soil Pollutants , Bioaccumulation , China , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
3.
Environ Sci Pollut Res Int ; 28(8): 9670-9681, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33151494

ABSTRACT

Ge and Si differ strongly in their biogeochemical behavior due to the differences in binding capacity to organic matter. The mechanisms of soil organic matter affecting the mobility and bioavailability of Ge in soil-plant system remain unclear. This work aimed to investigate the soil Ge fractions and Ge binding to humic substances in paddy soil. Paddy soil samples taken from Changxing County, Zhejiang Province, China, were investigated by the sequential extraction method. Humic acid (HA) and fulvic acid (FA) isolated from paddy soils were characterized by Fourier transform infrared spectrometry (FT-IR) and 3-dimensional excitation-emission matrix (3D-EEM). The effect of humic substances on the binding of Ge was studied by fluorescence-quenching titration. Results showed that residual Ge was the dominant fraction in soil (up to 85%). The mobile Ge, organic matter bound Ge and easily reduceable compounds bound Ge accounted for approximately 10% of soil TGe and may represented critical labile pools of soil Ge. Organic matter bound Ge significantly correlated (r = 0.56, p < 0.01) with rice Ge concentrations. The fluorescence of HA and FA was markedly quenched by the addition of Ge. The conditional stability constant of HA-Ge complexes was larger than that of FA-Ge complexes, and the complexation capacity of HA-Ge complexes was lower than that of FA-Ge complexes. Humic substances played a dual role in affecting the behavior of dissolved Ge in paddy soil. HA formed stable complexes with Ge and tended to sequester Ge, while FA formed soluble and unstable complexes with Ge and tended to act as a Ge carrier in soil-plant system.


Subject(s)
Germanium , Soil Pollutants , Benzopyrans/analysis , China , Humic Substances/analysis , Soil , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...