Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 19(5): 2851-2855, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30501790

ABSTRACT

In this study, we have realized controllable fabrication of gold nanopatterns on pristine monolayer graphene by using nanosphere lithography, in which polystyrene (PS) spheres are used as templates. With this method, periodically ordered triangular Au nanopatterns are uniformly formed on graphene surface. Micro-Raman spectroscopy shows that these sacrificial PS templates have no obvious effect on graphene surface structure while the subsequently formed Au nanopatterns are found to enhance Raman intensity of G and 2D bands by surface plasmon resonance. The compressive stress introduced in the metal deposition process leads to an obvious blue shift of 2D band. Besides, the metal-induced doping effect reduces the intensity ratio between 2D and G bands. This uniform arrangement of metal nanostructure is expected to grow other nanomaterials or used as Raman enhancement substrate in biomedicine, catalyzer and optics areas.

2.
ScientificWorldJournal ; 2013: 213091, 2013.
Article in English | MEDLINE | ID: mdl-24194676

ABSTRACT

The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.


Subject(s)
Remote Sensing Technology/instrumentation , Semiconductors , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL