Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(3): 1173-1184, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36795958

ABSTRACT

We designed, synthesized, and characterized a Raman nanoprobe made of dye-sensitized single-walled carbon nanotubes (SWCNTs) that can selectively target biomarkers of breast cancer cells. The nanoprobe is composed of Raman-active dyes encapsulated inside a SWCNT, whose surface is covalently grafted with poly(ethylene glycol) (PEG) at a density of ∼0.7% per carbon. Using α-sexithiophene- and ß-carotene-derived nanoprobes covalently bound to an antibody, either anti-E-cadherin (E-cad) or anti-keratin-19 (KRT19), we prepared two distinct nanoprobes that specifically recognize biomarkers on breast cancer cells. Immunogold experiments and transmission electron microscopy (TEM) images are first used to guide the synthesis protocol for higher PEG-antibody attachment and biomolecule loading capacity. The duplex of nanoprobes was then applied to target E-cad and KRT19 biomarkers in T47D and MDA-MB-231 breast cancer cell lines. Hyperspectral imaging of specific Raman bands allows for simultaneous detection of this nanoprobe duplex on target cells without the need for additional filters or subsequent incubation steps. Our results confirm the high reproducibility of the nanoprobe design for duplex detection and highlight the potential of Raman imaging for advanced biomedical applications in oncology.


Subject(s)
Nanotubes, Carbon , Neoplasms , Reproducibility of Results , Biomarkers , Polyethylene Glycols , Antibodies , Phenotype
2.
J Phys Chem C Nanomater Interfaces ; 123(16): 10578-10585, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-32064011

ABSTRACT

Surface-enhanced Raman scattering (SERS) and resonant Raman scattering are widely used techniques to enhance the Raman intensity of molecules and nanomaterials by several orders of magnitude. In SERS, typically, molecules are investigated and their intrinsic resonance is often ignored while discussing the plasmonic enhancement. Here, we study α-sexithiophenes encapsulated in carbon nanotubes placed in the center of a nanodimer. By dielectrophoretic deposition, we place the nanotubes precisely in the center of a plasmonic gold nanodimer and observe SERS enhancement from individual tube bundles. The encapsulated molecules are not subjected to chemical enhancement because of the protective character of the nanotube. Polarization-dependent Raman measurements confirm the alignment of the molecules within the carbon nanotubes (CNTs) and reveal the influence of the plasmonic near field on the molecule's Raman intensity. We investigate the encapsulated molecules in small CNT bundles with and without plasmonic enhancement and determine the molecular and plasmonic resonance by tuning the excitation wavelength. We observe a strong red shift of the maximum Raman intensity under plasmonic enhancement toward the plasmon resonance.

3.
Faraday Discuss ; 205: 85-103, 2017 12 04.
Article in English | MEDLINE | ID: mdl-28914310

ABSTRACT

We isolated the plasmonic contribution to surface-enhanced Raman scattering (SERS) and found it to be much stronger than expected. Organic dyes encapsulated in single-walled carbon nanotubes are ideal probes for quantifying plasmonic enhancement in a Raman experiment. The molecules are chemically protected through the nanotube wall and spatially isolated from the metal, which prevents enhancement by chemical means and through surface roughness. The tubes carry molecules into SERS hotspots, thereby defining molecular position and making it accessible for structural characterization with atomic-force and electron microscopy. We measured a SERS enhancement factor of 106 on α-sexithiophene (6T) molecules in the gap of a plasmonic nanodimer. This is two orders of magnitude stronger than predicted by the electromagnetic enhancement theory (104). We discuss various phenomena that may explain the discrepancy (including hybridization, static and dynamic charge transfer, surface roughness, uncertainties in molecular position and orientation), but found all of them lacking in enhancement for our probe system. We suggest that plasmonic enhancement in SERS is, in fact, much stronger than currently anticipated. We discuss novel approaches for treating SERS quantum mechanically that appear promising for predicting correct enhancement factors. Our findings have important consequences on the understanding of SERS as well as for designing and optimizing plasmonic substrates.

4.
ACS Nano ; 10(11): 10220-10226, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27779852

ABSTRACT

Liquid-phase encapsulation of α-sexithiophene (6T) molecules inside individualized single-walled carbon nanotubes (SWCNTs) is investigated using Raman imaging and spectroscopy. By taking advantage of the strong Raman response of this system, we probe the encapsulation isotherms at 30 and 115 °C using a statistical ensemble of SWCNTs deposited on a oxidized silicon substrate. Two distinct and sequential stages of encapsulation are observed: Stage 1 is a one-dimensional (1D) aggregation of 6T aligned head-to-tail inside the nanotube, and stage 2 proceeds with the assembly of a second row, giving pairs of aligned 6Ts stacked together side-by-side. The experimental data are fitted using both Langmuir (type VI) and Ising models, in which the single-aggregate (stage 1) forms spontaneously, whereas the pair-aggregate (stage 2) is endothermic in toluene with formation enthalpy of ΔHpair = (260 ± 20) meV. Tunable Raman spectroscopy for each stage reveals a bathochromic shift of the molecular resonance of the pair-aggregate, which is consistent with strong intermolecular coupling and suggestive of J-type aggregation. This quantitative Raman approach is sensitive to roughly 10 molecules per nanotube and provides direct evidence of molecular entry from the nanotube ends. These insights into the encapsulation process guide the preparation of well-defined 1D molecular crystals having tailored optical properties.

5.
Nat Mater ; 14(8): 826-32, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26006004

ABSTRACT

Thin layers of black phosphorus have recently raised interest owing to their two-dimensional (2D) semiconducting properties, such as tunable direct bandgap and high carrier mobilities. This lamellar crystal of phosphorus atoms can be exfoliated down to monolayer 2D-phosphane (also called phosphorene) using procedures similar to those used for graphene. Probing the properties has, however, been challenged by a fast degradation of the thinnest layers on exposure to ambient conditions. Herein, we investigate this chemistry using in situ Raman and transmission electron spectroscopies. The results highlight a thickness-dependent photoassisted oxidation reaction with oxygen dissolved in adsorbed water. The oxidation kinetics is consistent with a phenomenological model involving electron transfer and quantum confinement as key parameters. A procedure carried out in a glove box is used to prepare mono-, bi- and multilayer 2D-phosphane in their pristine states for further studies on the effect of layer thickness on the Raman modes. Controlled experiments in ambient conditions are shown to lower the A(g)(1)/A(g)(2) intensity ratio for ultrathin layers, a signature of oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...