Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35409128

ABSTRACT

Double-strand breaks (DSBs) in nuclear DNA represents radiation-induced damage that has been identified as particularly deleterious. Calculating this damage using Monte Carlo track structure modeling could be a suitable indicator to better assess and anticipate the side-effects of radiation therapy. However, as already demonstrated in previous work, the geometrical description of the nucleus and the DNA content used in the simulation significantly influence damage calculations. Therefore, in order to obtain accurate results, this geometry must be as realistic as possible. In this study, a new geometrical model of an endothelial cell nucleus and DNA distribution according to the isochore theory are presented and used in a Monte Carlo simulation chain based on the Geant4-DNA toolkit. In this theory, heterochromatin and euchromatin compaction are distributed along the genome according to five different families (L1, L2, H1, H2, and H3). Each of these families is associated with a different hetero/euchromatin rate related to its compaction level. In order to compare the results with those obtained using a previous nuclear geometry, simulations were performed for protons with linear energy transfers (LETs) of 4.29 keV/µm, 19.51 keV/µm, and 43.25 keV/µm. The organization of the chromatin fibers at different compaction levels linked to isochore families increased the DSB yield by 6-10%, and it allowed the most affected part of the genome to be identified. These new results indicate that the genome core is more radiosensitive than the genome desert, with a 3-8% increase in damage depending on the LET. This work highlights the importance of using realistic distributions of chromatin compaction levels to calculate radio-induced damage using Monte Carlo simulation methods.


Subject(s)
Euchromatin , Isochores , Chromatin , DNA/chemistry , DNA Damage , Euchromatin/genetics , Humans , Monte Carlo Method
2.
Int J Mol Sci ; 20(24)2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31835321

ABSTRACT

The objective of this work was to study the differences in terms of early biological effects that might exist between different X-rays energies by using a mechanistic approach. To this end, radiobiological experiments exposing cell monolayers to three X-ray energies were performed in order to assess the yields of early DNA damage, in particular of double-strand breaks (DSBs). The simulation of these irradiations was set in order to understand the differences in the obtained experimental results. Hence, simulated results in terms of microdosimetric spectra and early DSB induction were analyzed and compared to the experimental data. Human umbilical vein endothelial cells (HUVECs) were irradiated with 40, 220 kVp, and 4 MV X-rays. The Geant4 Monte Carlo simulation toolkit and its extension Geant4-DNA were used for the simulations. Microdosimetric calculations aiming to determine possible differences in the variability of the energy absorbed by the irradiated cell population for those photon spectra were performed on 10,000 endothelial cell nuclei representing a cell monolayer. Nanodosimetric simulations were also carried out using a computation chain that allowed the simulation of physical, physico-chemical, and chemical stages on a single realistic endothelial cell nucleus model including both heterochromatin and euchromatin. DNA damage was scored in terms of yields of prompt DSBs per Gray (Gy) and per giga (109) base pair (Gbp) and DSB complexity was derived in order to be compared to experimental data expressed as numbers of histone variant H2AX (γ-H2AX) foci per cell. The calculated microdosimetric spread in the irradiated cell population was similar when comparing between 40 and 220 kVp X-rays and higher when comparing with 4 MV X-rays. Simulated yields of induced DSB/Gy/Gbp were found to be equivalent to those for 40 and 220 kVp but larger than those for 4 MV, resulting in a relative biological effectiveness (RBE) of 1.3. Additionally, DSB complexity was similar between the considered photon spectra. Simulated results were in good agreement with experimental data obtained by IRSN (Institut de radioprotection et de sûreté nucléaire) radiobiologists. Despite differences in photon energy, few differences were observed when comparing between 40 and 220 kVp X-rays in microdosimetric and nanodosimetric calculations. Nevertheless, variations were observed when comparing between 40/220 kVp and 4 MV X-rays. Thanks to the simulation results, these variations were able to be explained by the differences in the production of secondary electrons with energies below 10 keV.


Subject(s)
DNA Damage , Euchromatin/metabolism , Heterochromatin/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Radiation Injuries, Experimental/metabolism , Animals , Dose-Response Relationship, Radiation , Euchromatin/pathology , Heterochromatin/pathology , Human Umbilical Vein Endothelial Cells/pathology , Humans , Monte Carlo Method , X-Rays/adverse effects
3.
Phys Med ; 62: 152-157, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31109825

ABSTRACT

The advancement of multidisciplinary research fields dealing with ionising radiation induced biological damage - radiobiology, radiation physics, radiation protection and, in particular, medical physics - requires a clear mechanistic understanding of how cellular damage is induced by ionising radiation. Monte Carlo (MC) simulations provide a promising approach for the mechanistic simulation of radiation transport and radiation chemistry, towards the in silico simulation of early biological damage. We have recently developed a fully integrated MC simulation that calculates early single strand breaks (SSBs) and double strand breaks (DSBs) in a fractal chromatin based human cell nucleus model. The results of this simulation are almost equivalent to past MC simulations when considering direct/indirect strand break fraction, DSB yields and fragment distribution. The simulation results agree with experimental data on DSB yields within 13.6% on average and fragment distributions agree within an average of 34.8%.


Subject(s)
Cell Nucleus/genetics , Cell Nucleus/radiation effects , DNA Damage , Fractals , Models, Biological , Monte Carlo Method , Animals , DNA Breaks, Double-Stranded/radiation effects , DNA Breaks, Single-Stranded/radiation effects , Time Factors
4.
Radiat Res ; 191(6): 566-584, 2019 06.
Article in English | MEDLINE | ID: mdl-31021733

ABSTRACT

Advances in accelerator technology, which have enabled conforming radiotherapy with charged hadronic species, have brought benefits as well as potential new risks to patients. To better understand the effects of ionizing radiation on tumor and surrounding tissue, it is important to investigate and quantify the relationship between energy deposition at the nanometric scale and the initial biological events. Monte Carlo track structure simulation codes provide a powerful tool for investigating this relationship; however, their success and reliability are dependent on their improvement and development accordingly to the dedicated biological data to which they are challenged. For this aim, a microbeam facility that allows for fluence control, down to one ion per cell nucleus, was used to evaluate relative frequencies of DNA damage after interaction between the incoming ion and DNA according to radiation quality. Primary human cells were exposed to alpha particles of three different energies with respective linear energy transfers (LETs) of approximately 36, 85 or 170 keV·µm-1 at the cells' center position, or to protons (19 keV·µm-1). Statistical evaluation of nuclear foci formation (53BP1/γ-H2AX), observed using immunofluorescence and related to a particle traversal, was undertaken in a large population of cell nuclei. The biological results were adjusted to consider the factors that drive the experimental uncertainties, then challenged with results using Geant4-DNA code modeling of the ionizing particle interactions on a virtual phantom of the cell nucleus with the same mean geometry and DNA density as the cells used in our experiments. Both results showed an increase of relative frequencies of foci (or simulated DNA damage) in cell nuclei as a function of increasing LET of the traversing particles, reaching a quasi-plateau when the LET exceeded 80-90 keV·µm-1. For the LET of an alpha particle ranging from 80-90 to 170 keV·µm-1, 10-30% of the particle hits did not lead to DNA damage inducing 53BP1 or γ-H2AX foci formation.


Subject(s)
DNA Damage , Linear Energy Transfer/genetics , Monte Carlo Method , Signal Transduction/genetics , Signal Transduction/radiation effects , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Histones/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/radiation effects , Humans , Models, Biological , Tumor Suppressor p53-Binding Protein 1/metabolism
5.
Radiat Prot Dosimetry ; 183(1-2): 26-31, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30535369

ABSTRACT

This work presents a comparison of simulated early radiation-induced DNA damage represented by yields of double-strand breaks (DSB) in three different human cell nuclei geometries representing fibroblasts, lymphocytes and endothelial cells for protons and alpha particles of different energies and for different irradiation configurations. Each cell nucleus model includes a multi-scale description of the DNA target from the molecular level to the whole human genome representation (6 Gbp) in the G0/G1 phase of the cell cycle and was generated with the DnaFabric software. The three nuclei differ in shape, volume, and therefore DNA density. A calculation chain based on Geant4-DNA that takes into account the physical, physico-chemical and chemical stages was used to simulate the irradiation of the different cell nuclei. Results show an increase of DSB/primary/µm with an increase of DNA density and an increase of DSB/Gy/Gbp with an increase of the cell nucleus volume which indicates that the cell nucleus shape and size have an impact on early DNA damage, which may play a role in latter effects.


Subject(s)
Cell Cycle/radiation effects , Cell Nucleus/radiation effects , DNA Breaks, Double-Stranded/radiation effects , Radiobiology/methods , Alpha Particles , Dose-Response Relationship, Radiation , Epithelial Cells/radiation effects , Fibroblasts/radiation effects , Humans , Lymphocytes/radiation effects , Models, Molecular , Protons
6.
Int J Radiat Biol ; 94(12): 1075-1084, 2018 12.
Article in English | MEDLINE | ID: mdl-30257122

ABSTRACT

Purpose: In a radiological examination, low-energy X-radiation is used (<100 keV). For other radiological procedures, the energy used is several MeV. ICRP in publication 103 has currently considered that photons irrespective of their energy have the same radiation weighting factor. Nevertheless, there are topological differences at the nanoscale of X-ray energy deposition as a function of its energy spectrum, meaning that the different interactions with living matter could vary in biological efficacy. Materials and methods: To study these differences, we characterized our irradiation conditions in terms of initial photon energies, but especially in terms of energy spectra of secondary electrons at the cell nucleus level, using Monte Carlo simulations. We evaluated signaling of DNA damage by monitoring a large number of γH2A.X foci after exposure of G0/G1-phase synchronized human primary endothelial cells from 0.25 to 5 Gy at 40 kV, 220 kV and 4 MV X-rays. Number and spatial distribution of γH2A.X foci were explored. In parallel, we investigated cell behavior through cell death and ability of a mother cell to produce two daughter cells. We also studied the missegregation rate after cell division. Results: We report a higher number of DNA double-strand breaks signaled by γH2A.X for 40 kVp and/or 220 kVp compared to 4 MVp for the highest tested doses of 2 and 5 Gy. We observed no difference between the biological endpoint studies with 40 kVp and 220 kVp X-ray spectra. This lack of difference could be explained by the relative similarity of the calculated energy spectra of secondary electrons at the cell monolayer. Conclusion: The energy spectrum of secondary electrons seems to be more closely related to the level of DNA damage measured by γH2A.X than the initial spectrum of photon energy or voltage settings. Our results indicate that as the energy spectrum of secondary electrons increases, the DNA damage signaled by γH2A.X decreases and this effect is observable beyond 220 kVp.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , Electrons , X-Rays , Cell Nucleus/chemistry , Cell Nucleus/radiation effects , Cells, Cultured , Histones/analysis , Humans
7.
Sci Rep ; 7(1): 11923, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931851

ABSTRACT

In order to improve the understanding of the mechanisms involved in the generation of early DNA damage, a new calculation chain based on the Geant4-DNA toolkit was developed. This work presents for the first time the simulation of the physical, physicochemical and chemical stages of early radiation damage at the scale of an entire human genome (fibroblast, male) and using Geant4-DNA models. The DnaFabric software was extended to generate and export this nucleus model to a text file with a specific format that can be read by Geant4 user applications. This calculation chain was used to simulate the irradiation of the nucleus by primary protons of different energies (0,5; 0,7; 0,8; 1; 1,5; 2; 3; 4; 5; 10; 20 MeV) and the results, in terms of DNA double strand breaks, agree with experimental data found in the literature (pulsed field electrophoresis technique). These results show that the simulation is consistent and that its parameters are well balanced. Among the different parameters that can be adjusted, our results demonstrate that the criterion used to select direct strand break appears to have a very significant role on the final number of simulated double strand breaks.


Subject(s)
Cell Nucleus/radiation effects , DNA Damage , DNA/radiation effects , Cells, Cultured , Chemical Phenomena , Computer Simulation , Fibroblasts/radiation effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...