Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865599

ABSTRACT

Epigenetic modifications of histone N-terminal tails play a critical role in regulating the chromatin structure and biological processes such as transcription and DNA repair. One of the key post-translational modifications (PTMs) is the acetylation of lysine residues on histone tails. Epigenetic modifications are ubiquitous in the development of diseases, such as cancer and neurological disorders. Histone H2B tails are critical regulators of nucleosome dynamics, biological processes, and certain diseases. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome to demonstrate that acetylation of the histone tails changes their conformational space and interaction with DNA. We perform simulations of H2B tails, critical regulators of gene regulation, in both the lysine-acetylated (ACK) and unacetylated wild type (WT) states. To explore the effects of salt concentration, we use two different NaCl concentrations to perform simulations at microsecond time scales. Salt can modulate the effects of electrostatic interactions between the DNA phosphate backbone and histone tails. Upon acetylation, H2B tails shift their secondary structure helical propensity. The number of contacts between the DNA and the H2B tail decreases. We characterize the conformational dynamics of the H2B tails by principal component analysis (PCA). The ACK tails become more compact at increased salt concentrations, but conformations from the WT tails display the most contacts with DNA at both salt concentrations. Mainly, H2B acetylation may increase the DNA accessibility for regulatory proteins to bind, which can aid in gene regulation and NCP stability.

2.
J Phys Chem B ; 128(13): 3090-3101, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38530903

ABSTRACT

The basic packaging unit of eukaryotic chromatin is the nucleosome that contains 145-147 base pair duplex DNA wrapped around an octameric histone protein. While the DNA sequence plays a crucial role in controlling the positioning of the nucleosome, the molecular details behind the interplay between DNA sequence and nucleosome dynamics remain relatively unexplored. This study analyzes this interplay in detail by performing all-atom molecular dynamics simulations of nucleosomes, comparing the human α-satellite palindromic (ASP) and the strong positioning "Widom-601" DNA sequence at time scales of 12 µs. The simulations are performed at salt concentrations 10-20 times higher than physiological salt concentrations to screen the electrostatic interactions and promote unwrapping. These microsecond-long simulations give insight into the molecular-level sequence-dependent events that dictate the pathway of DNA unwrapping. We find that the "ASP" sequence forms a loop around SHL ± 5 for three sets of simulations. Coincident with loop formation is a cooperative increase in contacts with the neighboring N-terminal H2B tail and C-terminal H2A tail and the release of neighboring counterions. We find that the Widom-601 sequence exhibits a strong breathing motion of the nucleic acid ends. Coincident with the breathing motion is the collapse of the full N-terminal H3 tail and formation of an α-helix that interacts with the H3 histone core. We postulate that the dynamics of these histone tails and their modification with post-translational modifications (PTMs) may play a key role in governing this dynamics.


Subject(s)
Histones , Nucleosomes , Humans , Histones/chemistry , Chromatin , DNA/chemistry , Molecular Dynamics Simulation
3.
J Chem Inf Model ; 63(8): 2419-2426, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37017507

ABSTRACT

The pathway for supramolecular fiber formation is coupled with the underlying order of the self-assembling molecules. Here, we report on atomistic molecular dynamics simulations to characterize the initial stages of the self-assembly of a model drug amphiphile in an aqueous solution. We perform two-dimensional metadynamics calculations to characterize the assembly space of this model drug amphiphile─Tubustecan, TT1. TT1 is composed of the hydrophobic anticancer drug, Camptothecin (CPT), conjugated to a hydrophilic polyethylene glycol (PEG) chain. We find that the aromatic stacking of CPT drives the formation of a higher-density liquid droplet. This droplet elongates and can form a higher-ordered supramolecular assembly upon reorganizing and forming an interface and additional aromatic stacking of the drugs. We show that novel reaction coordinates tailored to this class of molecules are essential in capturing the underlying degree of molecular order upon assembly. This approach can be refined and extended to characterize the supramolecular assembly pathway of other molecules containing aromatic compounds.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/chemistry , Polyethylene Glycols
4.
iScience ; 26(2): 105981, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36694788

ABSTRACT

Omicron BA.1 is a highly infectious variant of SARS-CoV-2 that carries more than thirty mutations on the spike protein in comparison to the Wuhan wild type (WT). Some of the Omicron mutations, located on the receptor-binding domain (RBD), are exposed to the surrounding solvent and are known to help evade immunity. However, the impact of buried mutations on the RBD conformations and on the mechanics of the spike opening is less evident. Here, we use all-atom molecular dynamics (MD) simulations with metadynamics to characterize the thermodynamic RBD-opening ensemble, identifying significant differences between WT and Omicron. Specifically, the Omicron mutations S371L, S373P, and S375F make more RBD interdomain contacts during the spike's opening. Moreover, Omicron takes longer to reach the transition state than WT. It stabilizes up-state conformations with fewer RBD epitopes exposed to the solvent, potentially favoring immune or antibody evasion.

5.
Nanoscale Adv ; 3(2): 370-382, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33796816

ABSTRACT

The shape of drug delivery vehicles impacts both the circulation time and the effectiveness of the vehicle. Peptide-based drug amphiphiles (DAs) are promising new candidates as drug delivery vehicles that can self-assemble into shapes such as nanofilament and nanotube (diameter ~ 6-10 nm). The number of conjugated drugs affects the IC50 of these DAs, which is correlated to the effective cellular uptake. Characterizing and optimizing the interaction of these DAs and their assemblies with the cellular membrane is experimentally challenging. Long-time molecular dynamics can determine if the DA molecular structure affects the translocation across and interaction with the cellular membrane. Here, we report long-time atomistic simulation on Anton 2 (up to 25 µs) of these DAs with model cellular membranes. Results indicate that the interaction of these DAs with model cellular membranes is dependent on the number of conjugated drugs. We find that, with increased drug loading, the hydrophobic drug (camptothecin) builds up in the outer hydrophobic core of the membrane, pulling in positively charged peptide groups. Next, we computationally probe the interaction of differing shapes of these model drug delivery vehicles-nanofilament and nanotube-with the same model membranes, finding that the interaction of these nanostructures with the membrane is strongly repulsive. Results suggest that the hydrogen bond density between the nanostructure and the membrane may play a key role in modulating the interaction between the nanostructure and the membrane. Taken together, these results offer important insights for the rational design of peptide-based drug delivery vehicles.

6.
J Chem Theory Comput ; 16(5): 3373-3384, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32126167

ABSTRACT

Accurate and efficient prediction of drug partitioning in model membranes is of significant interest to the pharmaceutical industry. Herein, we utilize advanced sampling methods, specifically, the adaptive biasing force methodology to calculate the potential of mean force for a model hydrophobic anticancer drug, camptothecin (CPT), across three model interfaces. We consider an octanol bilayer, a thick octanol/water interface, and a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/water interface. We characterize the enthalpic and entropic contributions of the drug to the potential of mean force. We show that the rotational entropy of the drug is inversely related to the probability of hydrogen bond formation of the drug with the POPC membrane. In addition, in long-time microsecond simulations of a high concentration of CPT above the POPC membrane, we show that strong drug-drug aromatic interactions shift the spatial orientation of the drug with the membrane. Stacks of hydrophobic drugs form, allowing penetration of the drug just under the POPC head groups. These results imply that inhomogeneous membrane models need to take into account the effect of drug aggregation on the membrane environment.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Camptothecin/chemistry , Cell Membrane/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , Cell Membrane/drug effects , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Models, Molecular , Phosphatidylcholines/chemistry
7.
J Phys Chem B ; 123(50): 10582-10593, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31749360

ABSTRACT

Peptide self-assembly has been used to design an array of nanostructures that possess functional biomedical applications. Experimental studies have reported nanofilament and nanotube formation from peptide-based drug amphiphiles (DAs). These DAs have shown to possess an inherently high drug loading with a tunable release mechanism. Herein, we report rational coarse-grained molecular dynamics simulations of the self-assembly process and the structure and stability of preassembled nanotubes at longer timescales (µs). We find that aggregation between these DAs at the submicrosecond timescale is driven by directional aromatic interactions between the drugs. The drugs form a large and high-density nucleus that is stable throughout microsecond timescales. Simulations of nanotubes characterize the drug-drug stacking and find correlations at nanometer length scales. These simulations can inform the rational molecular design of drug amphiphiles.


Subject(s)
Antineoplastic Agents/chemistry , Molecular Dynamics Simulation , Nanotubes/chemistry , Drug Design , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Peptides/chemistry
8.
Org Biomol Chem ; 15(38): 7993-8005, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28853474

ABSTRACT

This review describes recent progress in the area of molecular simulations of peptide assemblies, including peptide-amphiphiles and drug-amphiphiles. The ability to predict the structure and stability of peptide self-assemblies from the molecular level up is vital to the field of nanobiotechnology. Computational methods such as molecular dynamics offer the opportunity to characterize intermolecular forces between peptide-amphiphiles that are critical to the self-assembly process. Furthermore, these computational methods provide the ability to computationally probe the structure of these supramolecular assemblies at the molecular level, which is a challenge experimentally. Herein, we briefly highlight progress in the areas of all-atomistic and coarse-grained simulation studies investigating the self-assembly process of short peptides and peptide amphiphiles. We also discuss recent all-atomistic and coarse-grained simulations of the self-assembly of a drug-amphiphile into elongated filaments. Next, we discuss how these computational methods can provide further insight into the pathway of cylindrical nanofiber formation and predict their biocompatibility by studying the interaction of these peptide-amphiphile nanostructures with model cell membranes.


Subject(s)
Computer Simulation , Models, Chemical , Peptides/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...