Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 20(9): 1167-1173, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30609201

ABSTRACT

Phycobiliproteins are constituents of phycobilisomes that can harvest orange, red, and far-red light for photosynthesis in cyanobacteria and red algae. Phycobiliproteins in the phycobilisome cores, such as allophycocyanins, absorb far-red light to funnel energy to the reaction centers. Therefore, allophycocyanin subunits have been engineered as far-red fluorescent proteins, such as BDFP1.6. However, most current fluorescent probes have small Stokes shifts, which limit their applications in multicolor bioimaging. mCherry is an excellent fluorescent protein that has maximal emittance in the red spectral range and a high fluorescence quantum yield, and thus, can be used as a donor for energy transfer to a far-red acceptor, such as BDFP1.6, by FRET. In this study, mCherry was fused with BDFP1.6, which resulted in a highly bright far-red fluorescent protein, BDFP2.0, with a large Stokes shift (≈79 nm). The excitation energy was absorbed maximally at 587 nm by mCherry and transferred to BDFP1.6 efficiently; thus emitting strong far-red fluorescence maximally at 666 nm. The effective brightness of BDFP2.0 in mammalian cells was 4.2-fold higher than that of iRFP670, which has been reported as the brightest far-red fluorescent protein. The large Stokes shift of BDFP2.0 facilitates multicolor bioimaging. Therefore, BDFP2.0 not only biolabels mammalian cells, including human cells, but also biolabels various intracellular components in dual-color imaging.


Subject(s)
Bacterial Proteins/chemistry , Luminescent Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Bacterial Proteins/genetics , Cyanobacteria/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer , HEK293 Cells , HeLa Cells , Humans , Luminescent Proteins/genetics , Microscopy, Confocal , Microscopy, Fluorescence , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Red Fluorescent Protein
2.
J Biol Chem ; 293(46): 17705-17715, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30242127

ABSTRACT

Cyanobacteriochromes (CBCRs) are photochromic proteins in cyanobacteria that act as photosensors. CBCRs bind bilins as chromophores and sense nearly the entire visible spectrum of light, but the regulation of the chromophorylation of CBCRs is unknown. Slr1393 from Synechocystis sp. PCC 6803 is a CBCR containing three consecutive GAF (cGMP phosphodiesterase, adenylyl cyclase, and FhlA protein) domains, of which only the third one (Slr1393g3) can be phycocyanobilin-chromophorylated. The protein Slr2111 from Synechocystis sp. PCC 6803 includes a cystathionine ß-synthase (CBS) domain pair of an as yet unknown function at its N terminus. CBS domains are often characterized as sensors of cellular energy status by binding nucleotides. In this work, we demonstrate that Slr2111 strongly interacts with Slr1393 in vivo and in vitro, which generates a complex in a 1:1 molar ratio. This tight interaction inhibits the chromophorylation of Slr1393g3, even if the chromophore is present. Instead, the complex stability and thereby the chromophorylation of Slr1393 are regulated by the binding of nucleotides (ATP, ADP, AMP) to the CBS domains of Slr2111 with varying affinities. It is demonstrated that residues Asp-53 and Arg-97 of Slr2111 are involved in nucleotide binding. While ATP binds to Slr2111, the association between the two proteins gets weaker and chromophorylation of Slr1393 are enabled. In contrast, AMP binding to Slr2111 leads to a stronger association, thereby inhibiting the chromophorylation. It is concluded that Slr2111 acts as a sensor of the cellular energy status that regulates the chromophorylation of Slr1393 and thereby its function as a light-driven histidine kinase.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Photoreceptors, Microbial/metabolism , Phycobilins/metabolism , Phycocyanin/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Histidine Kinase/metabolism , Kinetics , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation , Sequence Alignment , Synechocystis/chemistry
3.
Photochem Photobiol Sci ; 16(7): 1153-1161, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28594045

ABSTRACT

Cyanobacterial phycobilisomes funnel the harvested light energy to the reaction centers via two terminal emitters, allophycocyanin B and the core-membrane linker. ApcD is the α-subunit of allophycocyanin B responsible for its red-shifted absorbance (λmax 665 nm). Far-red photo-acclimated cyanobacteria contain certain allophycocyanins that show even further red-shifted absorbances (λmax > 700 nm). We studied the chromophorylation of the three far-red induced ApcD subunits ApcD2, ApcD3 and ApcD4 from Chroococcidiopsis thermalis sp. PCC7203 during the expression in E. coli. The complex behavior emphasizes that a variety of factors contribute to the spectral red-shift. Only ApcD2 bound phycocyanobilin covalently at the canonical position C81, while ApcD3 and ApcD4 gave only traces of stable products. The product of ApcD2 was, however, heterogeneous. The major fraction had a broad absorption around 560 nm and double-peaked fluorescence at 615 and 670 nm. A minor fraction was similar to the product of conventional ApcD, with maximal absorbance around 610 nm and fluorescence around 640 nm. The heterogeneity was lost in C65 and C132 variants; in these variants only the conventional product was formed. With ApcD4, a red-shifted product carrying non-covalently bound phycocyanobilin could be detected in the supernatant after cell lysis. While this chromophore was lost during purification, it could be stabilized by co-assembly with a far-red light-induced ß-subunit, ApcB3.


Subject(s)
Cyanobacteria/chemistry , Cyanobacteria/radiation effects , Escherichia coli/metabolism , Light , Phycocyanin/chemistry , Phycocyanin/metabolism , Cyanobacteria/metabolism , Fluorescence , Phycobilins/chemistry , Phycobilins/metabolism
4.
Biochim Biophys Acta ; 1857(9): 1607-1616, 2016 09.
Article in English | MEDLINE | ID: mdl-27368145

ABSTRACT

Cyanobacterial light-harvesting complexes, phycobilisomes, can undergo extensive remodeling under varying light conditions. Acclimation to far-red light involves not only generation of red-shifted chlorophylls in the photosystems, but also induction of additional copies of core biliproteins that have been related to red-shifted components of the phycobilisome (Gan et al., Life 5, 4, 2015). We are studying the molecular basis for these acclimations in Chroococcidiopsis thermalis sp. PCC7203. Five far-red induced allophycocyanin subunits (ApcA2, ApcA3, ApcB2, ApcB3 and ApcF2) were expressed in Escherichia coli, together with S-type chromophore-protein lyases and in situ generated chromophore, phycocyanobilin. Only one subunit, ApcF2, shows an unusual red-shift (λAmax~675nm, λFmax~698nm): it binds the chromophore non-covalently, thereby preserving its full conjugation length. This mechanism operates also in two Cys-variants of the induced subunits of bulky APC. All other wild-type subunits bind phycocyanobilin covalently to the conventional Cys-81 under catalysis of the lyase, CpcS1. Although three of them also show binding to additional cysteines, all absorb and fluoresce similar to conventional APC subunits (λAmax~610nm, λFmax~640nm). Another origin of red-shifted complexes was identified, however, when different wild-type α- and ß-subunits of the far-red induced bulky APC were combined in a combinatorial fashion. Strongly red-shifted complexes (λFmax≤722nm) were formed when the α-subunit, PCB-ApcA2, and the ß-subunit, PCB-ApcB2, were generated together in E. coli. This extreme aggregation-induced red-shift of ~90nm of covalently bound chromophores is reminiscent, but much larger, than the ~30nm observed with conventional APC.


Subject(s)
Adaptation, Physiological , Cyanobacteria/chemistry , Light , Phycocyanin/chemistry , Binding Sites , Fluorescence , Protein Subunits
SELECTION OF CITATIONS
SEARCH DETAIL
...