Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35208-35216, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38936813

ABSTRACT

The unsatisfactory oxygen reduction reaction (ORR) kinetics caused by the inherent lean-oxygen marine environment brings low power density for metal-dissolved oxygen seawater batteries (SWBs). In this study, we propose a seawater/electrode interfacial engineering strategy by constructing a hydrophobic coating to realize enhanced mass transfer of dissolved oxygen for the fully immersed cathode of SWBs. Accumulation of dissolved oxygen from seawater to the catalyst is particularly beneficial for improving the ORR performance under lean-oxygen conditions. As a result, SWB assembled with a hydrophobic cathode achieved a power density of up to 2.32 mW cm-2 and sustained discharge at 1.3 V for 250 h. Remarkably, even in environments with an oxygen concentration of 4 mg L-1, it can operate at a voltage approximately 100 mV higher than that of an unmodified SWB. The introduction of a hydrophobic interface enhances the discharge voltage and power of SWBs by improving interfacial oxygen mass transfer, providing new insights into improving the underwater ORR performance for practical SWBs.

2.
Sci Bull (Beijing) ; 68(24): 3172-3180, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37839915

ABSTRACT

A dissolved-oxygen seawater battery (SWB) can generate electricity by reducing dissolved oxygen and sacrificing the metal anode at different depths and temperatures in the ocean, acting as the basic unit of spatially underwater energy networks for future maritime exploration. However, most traditional oxygen reduction reaction (ORR) catalysts are out of work at such ultralow dissolved oxygen concentration. Here, we proposed that the electronic axial stretching of the catalyst is essentially responsible for enhancing the catalyst's sensitivity to dissolved oxygen. By modulating the lattice of iron phthalocyanine (FePc) as a model catalyst, the unique electronic axial stretching in the z-direction of planar FePc molecules was realized to achieve a boosted adsorption and electron transfer and result in a much improved ORR activity in lean-oxygen seawater environment. The peak power density of a homemade SWB using a practical carbon brush electrode decorated by the FePc is estimated to be as high as 3 W L-1. These results provide inspiring insights into the interaction between the catalyst and complicated seawater environment, and propose the electronic axial stretching as an effective indicator for the rational design of catalysts to be used in extremely lean-oxygen environment.

3.
J Chem Phys ; 158(14): 141101, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061490

ABSTRACT

Seawater batteries (SWBs) are a key part of the future underwater energy network for maritime safety and resource development due to their high safety, long lifespan, and eco-friendly nature. However, the complicated seawater composition and pollution, such as the S2-, usually poison the catalyst and lead to the degradation of the battery performance. Here, Zn single-atom catalysts (SACs) were demonstrated as effective oxygen reduction reaction catalysts with high anti-poisoning properties by density functional theory calculation and the Zn SACs anchoring on an N, P-doped carbon substrate (Zn-SAC@PNC) was synthesized by a one-pot strategy. Zinc active sites ensure the anti-poisoning property toward S2-, and N, P-doped carbon helps improve the activity. Therefore, Zn-SAC@PNC exhibits superior activity (E1/2: 0.87 V, Tafel slope: 69.5 mV dec-1) compared with Pt/C and shows a lower decay rate of the voltage after discharge in lean-oxygen natural seawater. In the presence of S2-, Zn-SAC@PNC can still maintain its original catalytic activity, which ensures the stable operation of SWBs in the marine environment with sulfur-based pollutants. This study provides a new strategy to design and develop efficient cathode materials for SWBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...