Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(33): 18607-18622, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37566725

ABSTRACT

Coordination-driven self-assembly enables the spontaneous construction of metallo-supramolecules with high precision, facilitated by dynamic and reversible metal-ligand interactions. The dynamic nature of coordination, however, results in structural lability in many metallo-supramolecular assembly systems. Consequently, it remains a formidable challenge to achieve self-assembly reversibility and structural stability simultaneously in metallo-supramolecular systems. To tackle this issue, herein, we incorporate an acid-/base-responsive tridentate ligand into multitopic building blocks to precisely construct a series of metallo-supramolecular cages through coordination-driven self-assembly. These dynamic cagelike assemblies can be transformed to their static states through mild in situ deprotonation/oxidation, leading to ultrastable skeletons that can withstand high temperatures, metal ion chelators, and strong acid/base conditions. This in situ transformation provides a reliable and powerful approach to manipulate the kinetic features and stability of metallo-supramolecules and allows for modulation of encapsulation and release behaviors of metallo-cages when utilizing nanoscale quantum dots (QDs) as guest molecules.

2.
J Am Chem Soc ; 145(5): 3131-3145, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36696285

ABSTRACT

In biological systems, many biomacromolecules (e.g., heme proteins) are capable of switching their states reversibly in response to external stimuli, endowing these natural architectures with a high level of diversity and functionality. Although tremendous efforts have been made to advance the complexity of artificial supramolecules, it remains a challenge to construct metallo-supramolecular systems that can carry out reversible interconversion among multiple states. Here, a pH-responsive tridentate ligand, 2,6-di(1H-imidazole-2-yl)pyridine (H2DAP), is incorporated into the multitopic building block for precise construction of giant metallo-supramolecular hexagonal wreaths with three metal ions, i.e., Fe(II), Co(II), and Ni(II), through coordination-driven self-assembly. In particular, a Co-linked wreath enables in situ reversible interconversion among four states in response to pH and oxidant/reductant with highly efficient conversion without losing structural integrity. During the state interconversion cycles, the physical properties of the assembled constructs are finely tuned, including the charge states of the backbone, valency of metal ions, and paramagnetic/diamagnetic features of complexes. Such discrete wreath structures with a charge-switchable backbone further facilitate layer-by-layer assembly of metallo-supramolecules on the substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...