Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 203: 107184, 2024 May.
Article in English | MEDLINE | ID: mdl-38615874

ABSTRACT

Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.


Subject(s)
Inflammatory Bowel Diseases , T-Lymphocytes, Regulatory , Th17 Cells , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Th17 Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Diet
2.
Pharmacol Res ; 204: 107194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663526

ABSTRACT

Antibiotic related intestinal injury in early life affects subsequent health and susceptibility. Here, we employed weaned piglets as a model to investigate the protective effects of baicalin against early-life antibiotic exposure-induced microbial dysbiosis. Piglets exposed to lincomycin showed a marked reduction in body weight (p < 0.05) and deterioration of jejunum intestinal morphology, alongside an increase in antibiotic-resistant bacteria such as Staphylococcus, Dolosicoccus, Escherichia-Shigella, and Raoultella. In contrast, baicalin treatment resulted in body weights, intestinal morphology, and microbial profiles that closely resembled those of the control group (p > 0.05), with a significant increase in norank_f_Muribaculaceae and Prevotellaceae_NK3B31_group colonization compared with lincomycin group (p < 0.05). Further analysis through fecal microbial transplantation into mice revealed that lincomycin exposure led to significant alterations in intestinal morphology and microbial composition, notably increasing harmful microbes and decreasing beneficial ones such as norank_Muribaculaceae and Akkermansia (p < 0.05). This shift was associated with an increase in harmful metabolites and disruption of the calcium signaling pathway gene expression. Conversely, baicalin supplementation not only counteracted these effects but also enhanced beneficial metabolites and regulated genes within the MAPK signaling pathway (MAP3K11, MAP4K2, MAPK7, MAPK13) and calcium channel proteins (ORA13, CACNA1S, CACNA1F and CACNG8), suggesting a mechanism through which baicalin mitigates antibiotic-induced intestinal and microbial disturbances. These findings highlight baicalin's potential as a plant extract-based intervention for preventing antibiotic-related intestinal injury and offer new targets for therapeutic strategies.


Subject(s)
Anti-Bacterial Agents , Flavonoids , Gastrointestinal Microbiome , Lincomycin , MAP Kinase Signaling System , Animals , Flavonoids/pharmacology , Flavonoids/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Swine , MAP Kinase Signaling System/drug effects , Lincomycin/pharmacology , Mice , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Male , Intestines/drug effects , Intestines/pathology
3.
J Anim Sci Biotechnol ; 14(1): 38, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36882874

ABSTRACT

BACKGROUND: Pectin is a heteropolysaccharide that acts as an intestinal immunomodulator, promoting intestinal development and regulating intestinal flora in the gut. However, the relevant mechanisms remain obscure. In this study, pigs were fed a corn-soybean meal-based diet supplemented with either 5% microcrystalline cellulose (MCC) or 5% pectin for 3 weeks, to investigate the metabolites and anti-inflammatory properties of the jejunum. RESULT: The results showed that dietary pectin supplementation improved intestinal integrity (Claudin-1, Occludin) and inflammatory response [interleukin (IL)-10], and the expression of proinflammatory cytokines (IL-1ß, IL-6, IL-8, TNF-α) was down-regulated in the jejunum. Moreover, pectin supplementation altered the jejunal microbiome and tryptophan-related metabolites in piglets. Pectin specifically increased the abundance of Lactococcus, Enterococcus, and the microbiota-derived metabolites (skatole (ST), 3-indoleacetic acid (IAA), 3-indolepropionic acid (IPA), 5-hydroxyindole-3-acetic acid (HIAA), and tryptamine (Tpm)), which activated the aryl hydrocarbon receptor (AhR) pathway. AhR activation modulates IL-22 and its downstream pathways. Correlation analysis revealed the potential relationship between metabolites and intestinal morphology, intestinal gene expression, and cytokine levels. CONCLUSION: In conclusion, these results indicated that pectin inhibits the inflammatory response by enhancing the AhR-IL22-signal transducer and activator of transcription 3 signaling pathway, which is activated through tryptophan metabolites.

4.
Poult Sci ; 102(5): 102585, 2023 May.
Article in English | MEDLINE | ID: mdl-36913758

ABSTRACT

This study aimed to evaluate the individual and combined effects of chemically protected sodium butyrate (CSB) and xylo-oligosaccharide (XOS) on performance, anti-inflammatory and antioxidant capacity, intestinal morphology and microbiota of broilers. A total of 280 one-day-old Arbor Acres broilers were randomly distributed into 5 treatments: basal diet (CON), basal diet supplemented with 100 mg/kg aureomycin and 8 mg/kg enramycin (ABX), 1000 mg/kg CSB (CSB), 100 mg/kg XOS (XOS), and mixture of 1000 mg/kg CSB and 100 mg/kg XOS (MIX), respectively. On d 21, ABX, CSB, and MIX decreased feed conversion ratio compared with CON (CON: ABX: CSB: MIX = 1.29: 1.22: 1.22: 1.22), whereas body weight of CSB and MIX was increased by 6.00% and 7.93%, and average daily gain was increased by 6.62% and 8.67% at 1-21 d, respectively (P < 0.05). The main effect analysis showed that both CSB and XOS treatments increased ileal villus height and villus height to crypt depth ratio (VCR) (P < 0.05). Moreover, broilers in ABX showed lower 21.39% ileal crypt depth and higher 31.43% VCR than those in CON (P < 0.05). Dietary CSB and XOS were added individually or collectively increased total antioxidant capacity and superoxide dismutase, and anti-inflammatory cytokines interleukin-10 and transforming growth factor-ß, whereas decreased malondialdehyde, and proinflammatory cytokines IL-6 and tumor necrosis factor-α content in serum (P < 0.05). Meanwhile, MIX showed the best effect of antioxidant and anti-inflammatory capacity among the 5 groups (P < 0.05). There was an interaction between CSB and XOS treatments on increasing cecal acetic acid, propionic acid, butyric acid and total short-chain fatty acid (SCFA) (P < 0.05), and the one-way ANOVA showed that propionic acid in CSB was 1.54 times that of CON, whereas butyric acid and total SCFAs in XOS were 1.22 times and 1.28 times that of CON, respectively (P < 0.05). Furthermore, dietary combination of CSB and XOS changed phyla Firmicutes and Bacteroidota, and increased genera Romboutsia and Bacteroides (P < 0.05). In conclusion, dietary CSB and XOS improved growth performance of broilers, and the combined addition of them had the best effect on anti-inflammatory and antioxidant capacity, and intestinal homeostasis of broilers in current study, indicating that it may be a potential natural alternative to antibiotics.


Subject(s)
Antioxidants , Microbiota , Animals , Butyric Acid/pharmacology , Chickens , Dietary Supplements/analysis , Diet/veterinary , Oligosaccharides/pharmacology , Animal Feed/analysis
5.
Front Microbiol ; 14: 1289490, 2023.
Article in English | MEDLINE | ID: mdl-38282732

ABSTRACT

According to the Chinese encyclopedia "Ben Cao Gang Mu" (AD 1552-1578), Caprifoliaceae and Scutellaria baicalensis Georgi are used in traditional Chinese medicine to clear heat, detoxify, and treat wind-heat colds, upper respiratory tract infections, and pneumonia. However, the mechanism and the effects of the compound extracts of Caprifoliaceae and Scutellaria baicalensis Georgi on intestinal health remain unclear. From the perspective of intestinal microbes, this study assessed the antioxidant, anti-inflammatory, and intestinal protective properties of Caprifoliaceae and Scutellaria baicalensis Georgi. Mice received diets with or without Caprifoliaceae and Scutellaria baicalensis Georgi extractive (BCA) for 2 weeks in this study. The results showed that BCA increased body weight gain, feed intake, and catalase (CAT) content in the mice but reduced γ-glutamyl transpeptidase (γ-GT) content in the serum (p < 0.05). BCA improved the Sobs, Chao, and Ace indices, as well as the number of Campylobacterota, Patercibacteria, and Desulfobacterota in the colon microbiota, while it decreased the Firmicutes phylum (p < 0.05). At the genus level, BCA increased Candidatus_Saccharimonas, Helicobacter, unclassified_f_Lachnospiraceae, Alistipes, norank_f_norank_o_Clostridia_vadinBB60_group, norank_f_Ruminococcaceae, unclassified_f_Ruminococcaceae, etc. abundance (p < 0.05), but it significantly decreased Lactobacillus and Lachnospiraceae_UCG_001 abundance (p < 0.05). Moreover, BCA improved the concentration of acetic acid, butyric acid, propionic acid, valeric acid, and isovaleric acid and diminished the concentration of isobutyric acid (p < 0.05). Correlation analysis shows that the changes in short-chain fatty acids and antioxidant and inflammatory indices in the serum were significantly correlated with the BCA-enriched microbiota. This study supplemented a database for the application of Caprifoliaceae and Scutellaria baicalensis Georgi in clinical and animal production.

6.
Front Microbiol ; 13: 1076123, 2022.
Article in English | MEDLINE | ID: mdl-36532493

ABSTRACT

This study aimed to investigate the effects of different feeding patterns on meat quality, gut microbiota and its metabolites of Tibetan pigs. Tibetan pigs with similar body weight were fed the high energy diets (HEP, 20 pigs) and the regular diets (RFP, 20 pigs), and free-ranging Tibetan pigs (FRP, 20 pigs) were selected as the reference. After 6 weeks of experiment, meat quality indexes of semitendinosus muscle (SM) and cecal microbiota were measured. The results of meat quality demonstrated that the shear force of pig SM in FRP group was higher than that in HEP and RFP groups (p < 0.001); the pH-value of SM in HEP pigs was higher at 45 min (p < 0.05) and lower at 24 h (p < 0.01) after slaughter than that in FRP and RFP groups; the SM lightness (L* value) of FRP pigs increased compared with RFP and HEP groups (p < 0.001), while the SM redness (a* value) of FRP pigs was higher than that of RFP group (p < 0.05). The free fatty acid (FA) profile exhibited that the total FAs and unsaturated FAs of pig SM in HEP and RFP groups were higher than those in FRP group (p < 0.05); the RFP pigs had more reasonable FA composition with higher n-3 polyunsaturated FAs (PUFAs) and lower n-6/n-3 PUFA ratio than HEP pigs (p < 0.05). Based on that, we observed that Tibetan pigs fed high energy diets (HEP) had lower microbial α-diversity in cecum (p < 0.05), and distinct feeding patterns exhibited a different microbial cluster. Simultaneously, the short-chain FA levels in cecum of FRP and RFP pigs were higher compared with HEP pigs (p < 0.05). A total of 11 genera related to muscle lipid metabolism or meat quality, including Alistipes, Anaerovibrio, Acetitomaculun, etc., were identified under different feeding patterns (p < 0.05). Spearman correlation analysis demonstrated that alterations of free FAs in SM were affected by the genera Prevotellaceae_NK3B31_group, Prevotellaceae UCG-003 and Christensenellaceae_R-7_group (p < 0.05). Taken together, distinct feeding patterns affected meat quality of Tibetan pigs related to gut microbiota alterations.

7.
Anim Nutr ; 11: 228-241, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36263409

ABSTRACT

Although high temperatures influence gut health, data on underlying mechanisms remains scant. Using a pig model, this study performed a global analysis on how chronic heat stress affects the transport and immune function of the gut through transcriptome, proteome, microbial diversity and flow cytometry. A total of 27 pigs with similar body weights were assigned into 3 groups, control (Con) group (23 °C), chronic heat stressed (HS) group (33 °C), and pair-fed (PF) group, in a controlled environment for 21 days. Our results showed that pigs in the HS group had reduced growth performance and diminished height of ileal villi (P < 0.01). Transcriptome and proteome analyses demonstrated notable modification of expression of nutrients and ion transport-related transporters and gut mechanical barrier-related genes by chronic heart stress (P < 0.05), suggesting damage of transport functions and the gut barrier. Chronic heat stress-induced endoplasmic reticulum stress also increased the synthesis of misfolded proteins, leading to upregulation of misfolded protein degradation and synthesis, as well as vesicle transport disorder (P < 0.05). Energy supply processes were enhanced in the mitochondrion (P < 0.05) to maintain biological processes with high energy demands. Furthermore, chronic heat stress activated complement cascade response-related genes and proteins in the gut mucosa (P < 0.05). Our flow cytometry assays showed that the proportion of gut lymphocytes (CD4+ T cells, T cells, B cells in Peyer's patch lymphocytes and CD4+ CD25+ T cells in intraepithelial lymphocytes) were significantly altered in the HS group pigs (P < 0.05). In addition, the occurrence of gut microbial dysbiosis in the HS group pigs was characterized by increased potential pathogens (e.g., Asteroleplasma, Shuttleworthia, Mycoplasma) and suppression of beneficial bacteria (e.g., Coprococcus and Aeriscardovia), which are associated with gut immune function. Altogether, our data demonstrated that chronic heat stress induced gut transport and immune function disorder associated with endoplasmic reticulum stress in growing pigs.

8.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36198005

ABSTRACT

This study aimed to investigate the effects of chronic heat stress on the immunophenotyping of lymphocytes in immune organs of growing pigs. A single-factor randomized block design was used, and 15 healthy growing large white barrows (5 litters, 3 pigs/litter) with similar body weight (40.8 kg) were assigned into 3 groups (5 pigs in each group). Groups were: control group (Con, in 23 °C environmental control chamber, fed ad libitum), heat stress group (HS, in 33 °C environmental control chamber, fed ad libitum), and pair-fed group (PF, in 23 °C environmental control chamber, fed diets according to the feed intake of HS group). After a 7-d adaption, the experiment lasted for 21 d. The results showed as follows: (1) activated T cells in the thymus of HS pigs were higher than those in PF pigs (P < 0.05). Monocytes and dendritic cells in the thymus of HS pigs were significantly higher than that in Con and PF pigs (P < 0.05), while the proportions of these 2 lymphocytes in the thymus of Con pigs did not differ from PF pigs (P > 0.05). Compared with Con pigs, the proportion of CD4+ (P < 0.05) and CD8+ T cells (P < 0.10) in the thymus was increased in HS pigs, while the proportion of CD4+ and CD8+ T cells in PF pigs did not differ from Con pigs (P > 0.05). (2) Compared with Con pigs, significantly decreased T cells, increased B cells and monocytes were found in the spleen of pigs exposed to heat stress (P < 0.05); the proportions of these 3 types of lymphocytes were not significantly different between Con and PF pigs (P > 0.05). The proportions of CD4+ T cells and Treg cells in the spleen of pigs exposed to heat stress tended to be lower than those in the Con pigs (P < 0.10). (3) The proportion of lymphocytes in the tonsils of pigs exposed to heat stress did not differ from Con pigs (P > 0.05); compared with PF pigs, the proportion of Treg cells was significantly decreased in HS pigs (P < 0.05). In conclusion, chronic heat stress stimulates the development and maturation of T cells in the pig thymus toward CD4+ and CD8+ T cells and increases the proportion of monocytes and dendritic cells; under the condition of chronic heat stress, the immune response process in the spleen of pigs is enhanced, but chronic heat stress impairs the survival of CD4+ T cells in the spleen.


Chronic heat stress (HS) has become a common hazard to livestock and poultry as global warming intensifies and breeding densities increase, which undoubtedly causes enormous economic losses to animal husbandry annually. Furthermore, it could also negatively impact the immune function of poultry and vaccines, resulting in various animal diseases. Until now, very few studies have focused on how HS affects the immune system of growing pigs, especially the immunophenotyping of lymphocytes in their immune organs (thymus, spleen and tonsils). In this study, the spleen and thymus are more severely affected by chronic HS than tonsils in growing pigs. Chronic HS stimulates the development and maturation of CD4+ and CD8+ T lymphocytes in the thymus. Under chronic HS, the immune response process in the spleen is enhanced, that is, the proportion of monocytes and B lymphocytes supporting immune responses increased, while the proportion of Treg cells decreased; yet long-term HS damaged the survival of CD4+ T lymphocytes in spleen.


Subject(s)
Heat Stress Disorders , Swine Diseases , Animals , Diet , Heat Stress Disorders/veterinary , Heat-Shock Response , Hot Temperature , Immunophenotyping/veterinary , Lymphocytes , Swine
9.
Front Cell Dev Biol ; 10: 840298, 2022.
Article in English | MEDLINE | ID: mdl-35912104

ABSTRACT

Although, the cecum plays vital roles in absorption of water, electrolytes, and other small molecules, and harbors trillions of commensal bacteria to shape large intestine immune functions, it is unknown the cecum development potentials at single cell level during the very crucial neonatal developmental period. Using singe cell RNA-seq and proteomics, we have characterized six major types of cecal cells: undifferentiated cells; immune cells (Ims); cecumocytes (CCs); goblet, Paneth like cells (PLCs), and enteroendocrine cells (EECs) with specific markers. CCs mature with a gradual decrease in proportion of cells; however, Ims develop with a continuing increase in proportion of cells. Meanwhile, goblet and EEC cells reduced in proportion of cells from do to d14 or d21; PLCs increased in proportion of cells from d0 to d7 then decreased at d14 and d21. The cells exhibit specific development and maturation trends controlled by transcriptional factors, ligand-receptor pairs, and other factors. As piglets grow, cecal content and mucosal microbial diversity increases dramatically with population of beneficial microbiota, such as lactobacillus. Moreover, cecal mucosal-associated and cecal content microbiota are positively correlated and both show significant correlation with different types of cecal cells and plasma metabolites. This is the first presentation of neonatal cecal cell development and maturation naturally at single cell level with transcript, protein, microbiota and metabolism perspectives. Furthermore, this study provides an important tool for the determination of novel interventions in cecal drug delivery and metabolism studies.

10.
Carbohydr Polym ; 294: 119776, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868753

ABSTRACT

Xylooligosaccharide (XOS) has tremendous prebiotic potentials for gut health, but the relevant mechanisms are unclear. Herein, we confirmed the positive effects of dietary XOS enhancing gut barrier in a pig model via suppressing the expression of pro-inflammatory cytokines (IL-6 and IL-8). Meanwhile, XOS increased beneficial microbes Lactobacillus and decreased potential pathogenic bacteria. Moreover, XOS augmented microbiota-derived metabolites (mainly butyrate, propionate, and secondary bile acid) to strengthen the gut barrier and regulate gut immunity through activating host G-protein coupled receptors 109a or inhibiting histone deacetylases. Furthermore, XOS attenuated IgA-production and antigen cross-presentation processes. In addition, XOS supplementation led to the alteration of cell proliferation, remodeling of the energy metabolism, activation processes of serial genes or proteins, increased molecular chaperones, and the enhanced ubiquitin-proteasome pathway in cecal cells. Collectively, these results suggest that XOS enhances gut barrier and modulates gut immunity by optimizing gut microbiota and their metabolites, which is associated with alterations of biological processes.


Subject(s)
Gastrointestinal Microbiome , Animals , Glucuronates/metabolism , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Prebiotics , Swine
11.
J Nutr Biochem ; 109: 109107, 2022 11.
Article in English | MEDLINE | ID: mdl-35863585

ABSTRACT

During weaning, infants and young animals are susceptible to severe enteric infections, thus inducing intestinal microbiota dysbiosis, intestinal inflammation, and impaired intestinal barrier function. Pectin (PEC), a prebiotic polysaccharide, enhances intestinal health with the potential for a therapeutic effect on intestinal diseases. One 21-d study was conducted to investigate the protective effect of pectin against intestinal injury induced by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) in a piglet model. A total of 24 piglets (6.77±0.92 kg BW; Duroc × Landrace × Large White; barrows; 21 d of age) were randomly assigned into three groups: control group, LPS-challenged group, and PEC + LPS group. Piglets were administrated with LPS or saline on d14 and d21 of the experiment. All piglets were slaughtered and intestinal samples were collected after 3 h administration on d21. Pectin supplementation ameliorated the LPS-induced inflammation response and damage to the ileal morphology. Meanwhile, pectin also improved intestinal mucin barrier function, increased the mRNA expression of MUC2, and improved intestinal mucus glycosylation. LPS challenge reduced the diversity of intestinal microbiota and enriched the relative abundance of Helicobacter. Pectin restored alpha diversity and improved the structure of the gut microbiota by enriching anti-inflammatory bacteria and short-chain fatty acids (SCFAs)-producing bacteria, and increased the concentrations of acetate. In addition, Spearman rank correlation analysis also revealed the potential relationship between intestinal microbiota and intestinal morphology, intestinal inflammation, and intestinal glycosylation in piglets. Taken together, these results indicate that pectin enhances intestinal integrity and barrier function by altering intestinal microbiota composition and their metabolites, which subsequently alleviates intestinal injury and finally improves the growth performance of piglets.


Subject(s)
Gastrointestinal Microbiome , Lipopolysaccharides , Animals , Dietary Supplements , Fatty Acids, Volatile , Inflammation/metabolism , Lipopolysaccharides/toxicity , Mucins , Pectins/pharmacology , RNA, Messenger , Swine
12.
Int J Mol Sci ; 23(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35682750

ABSTRACT

The adverse effects of short-term megadose of antibiotics exposure on the gastrointestinal and liver tissue reactions in young children have been reported. Antibiotic-induced intestinal and liver reactions are usually unpredictable and present a poorly understood pathogenesis. It is, therefore, necessary to develop strategies for reducing the adverse effects of antibiotics. Studies on the harm and rescue measures of antibiotics from the perspective of the gut-liver system are lacking. Here, we demonstrate that lincomycin exposure reduced body weight, disrupted the composition of gut microbiota and intestinal morphology, triggered immune-mediated injury and inflammation, caused liver dysfunction, and affected lipid metabolism. However, baicalin administration attenuated the lincomycin-induced changes. Transcriptome analysis showed that baicalin improved immunity in mice, as evidenced by the decreased levels of intestinal inflammatory cytokines and expression of genes that regulate Th1, Th2, and Th17 cell differentiation, and inhibited mucin type O-glycan biosynthesis pathways. In addition, baicalin improved liver function by upregulating the expression of genes involved in bile acid secretion and lipid degradation, and downregulating genes involved in lipid synthesis in lincomycin-treated mice. Bile acids can regulate intestinal immunity and strengthen hepatoenteric circulation. In addition, baicalin also improved anti-inflammatory bacteria abundance (Blautia and Coprobacillus) and reduced pathogenic bacteria abundance (Proteobacteria, Klebsiella, and Citrobacter) in lincomycin-treated mice. Thus, baicalin can ameliorate antibiotic-induced injury and its associated complications such as liver disease.


Subject(s)
Inflammation , Lincomycin , Animals , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/metabolism , Child, Preschool , Flavonoids , Humans , Inflammation/pathology , Lincomycin/metabolism , Lincomycin/pharmacology , Lipids/pharmacology , Liver/metabolism , Mice , Mice, Inbred C57BL
13.
Front Nutr ; 8: 747136, 2021.
Article in English | MEDLINE | ID: mdl-34901107

ABSTRACT

Bile acids are critical for lipid absorption, however, their new roles in maintaining or regulating systemic metabolism are irreplaceable. The negative impacts of heat stress (HS) on growth performance, lipid metabolism, and antioxidant status have been reported, but it remains unknown whether the bile acids (BA) composition of broiler chickens can be affected by HS. Therefore, this study aimed to investigate the modulating effects of the environment (HS) and whether dietary BA supplementation can benefit heat-stressed broiler chickens. A total of 216 Arbor Acres broilers were selected with a bodyweight approach average and treated with thermal neutral (TN), HS (32°C), or HS-BA (200 mg/kg BA supplementation) from 21 to 42 days. The results showed that an increase in average daily gain (P < 0.05) while GSH-Px activities (P < 0.05) in both serum and liver were restored to the normal range were observed in the HS-BA group. HS caused a drop in the primary BA (P = 0.084, 38.46%) and Tauro-conjugated BA (33.49%) in the ileum, meanwhile, the secondary BA in the liver and cecum were lower by 36.88 and 39.45% respectively. Notably, results were consistent that SBA levels were significantly increased in the serum (3-fold, P = 0.0003) and the ileum (24.89-fold, P < 0.0001). Among them, TUDCA levels (P < 0.01) were included. Besides, BA supplementation indeed increased significantly TUDCA (P = 0.0154) and THDCA (P = 0.0003) levels in the liver, while ileal TDCA (P = 0.0307), TLCA (P = 0.0453), HDCA (P = 0.0018), and THDCA (P = 0.0002) levels were also increased. Intestinal morphology of ileum was observed by hematoxylin and eosin (H&E) staining, birds fed with BA supplementation reduced (P = 0.0431) crypt depth, and the ratio of villous height to crypt depth trended higher (P = 0.0539) under the heat exposure. Quantitative RT-PCR showed that dietary supplementation with BA resulted in upregulation of FXR (P = 0.0369), ASBT (P = 0.0154), and Keap-1 (P = 0.0104) while downregulation of iNOS (P = 0.0399) expression in ileum. Moreover, 16S rRNA gene sequencing analysis and relevance networks revealed that HS-derived changes in gut microbiota and BA metabolites of broilers may affect their resistance to HS. Thus, BA supplementation can benefit broiler chickens during high ambient temperatures, serving as a new nutritional strategy against heat stress.

14.
Appl Microbiol Biotechnol ; 105(21-22): 8441-8456, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34651253

ABSTRACT

Increasing evidence suggests that antibiotic administration causes gut injury, negatively affecting nutrient digestion, immune regulation, and colonization resistance against pathogens due to the disruption of gut microbiota. However, the time-course effects of therapeutic antibiotics on alterations of gut microbes and short-chain fatty acids (SCFAs) in young swine are still unknown. In this study, twenty piglets were assigned into two groups and fed commercial diets with or without lincomycin in the first week for a 28-day trial period. Results showed that 1-week lincomycin exposure (LE) did reduce the body weight on day 14 (p = 0.0450) and 28 (p = 0.0362). The alpha-diversity notably reduced after 1-week LE, and then gradually raised and reached the control group level in the second week on cessation of LE, indicated by the variation of Sobs, Chao, Shannon, and ACE index (p < 0.05). Beta-diversity analysis revealed that the distinct microbial cluster existed persistently for the whole trial period between two groups (p < 0.001). The relative abundance of most microbes including fiber-degrading (e.g., Agathobacter and Coprococcus), beneficial (e.g., Lactobacillus and Mitsuokella), or pathogenic bacteria (e.g., Terrisporobacter and Lachnoclostridium) decreased (LDA score > 3), and the concentration of SCFAs also diminished in the feces of 1-week lincomycin-administrated young swine, indicating that therapeutic LE killed most bacteria and reduced SCFA production with gut dysbiosis occurring. After the LE stopped, the state of gut dysbiosis gradually attenuated and formed new gut-microbe homeostasis distinct from microbial homeostasis of young pigs unexposed to lincomycin. The increased presence of potential pathogens, such as Terrisporobacter, Negativibacillus, and Escherichia-Shigella, and decreased beneficial bacteria, such as Lactobacillus and Agathobacter, were observed in new homeostasis reshaped by short-lincomycin administration (LDA score > 3 or p < 0.05), adversely affecting gut development and health of young pigs. Collectively, these results suggested that severe disruption of the commensal microbiota occurred after short-term LE or termination of LE in young swine. KEY POINTS: • Therapeutic lincomycin exposure induced gut dysbiosis, killing most bacteria and reducing short-chain fatty acid production. • Gut dysbiosis gradually attenuated and formed new homeostasis after lincomycin exposure stopped. • The new homeostasis, increased Escherichia-Shigella etc. and decreased Lactobacillus etc., was potentially harmful to gut health.


Subject(s)
Gastrointestinal Microbiome , Animals , Dysbiosis , Fatty Acids, Volatile , Feces , Lincomycin , Swine
15.
Food Funct ; 12(22): 11420-11434, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34673859

ABSTRACT

The purpose of the current study was to investigate the effect of dietary dihydroquercetin (DHQ) supplementation on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were given DHQ supplementation (3 g kg-1) throughout the study, starting 14 days prior to DSS treatment for 1 week followed by 2 days without DSS. The results showed that dietary DHQ supplementation restored DSS-induced disease activity index (DAI), colon length and histopathology scores of the colon tissue. Additionally, supplementation with DHQ reduced the pro-inflammatory cytokine levels, and enhanced the level of IL-10 in the serum. qPCR results indicated that DHQ supplementation significantly downregulated IL-1ß, IL-6, and TNF-α, and upregulated IL-10 gene mRNA expression. Western blot results proved that DHQ supplementation upregulated ZO-1 and occludin levels. Using amplicon sequencing technology, 16S rRNA sequencing results showed that DHQ supplementation increased the fecal Firmicutes/Bacteroidetes ratio and the relative abundance of Lactobacillus and Dubosiella, and decreased the relative abundance of Bacteroidetes. Additionally, DHQ supplementation restored the decreased fecal acetic acid and butyric acid concentrations in DSS-induced colitis mice. Besides, Spearman's correlation analysis showed that Dubosiella was positively correlated with the butyric acid level and Bacteroidetes was positively correlated with the mRNA expression of IL-1ß and IL-6. Both Lactobacillus and Dubosiella showed a negative correlation with the mRNA expression of IL-1ß, IL-6, and TNF-α, and Dubosiella was positively correlated with IL-10. In summary, it was found that DHQ supplementation alleviated DSS-induced colitis which may be potentially associated with altered fecal microbiota communities in mice.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colitis/metabolism , Gastrointestinal Microbiome/drug effects , Quercetin/analogs & derivatives , Animals , Colitis/chemically induced , Dextran Sulfate/adverse effects , Dietary Supplements , Female , Mice , Mice, Inbred ICR , Quercetin/pharmacology
16.
Anim Nutr ; 7(4): 947-958, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34703912

ABSTRACT

Aerial ammonia exposure leads to tissue damage and metabolic dysfunction. However, it is unclear how different organs are coordinated to defend against aerial ammonia exposure. Twenty-four pigs were randomly divided into 4 groups, exposed to 0, 10, 25 or 35 mg/m3 ammonia respectively for 25 d. After above 25 mg/m3 ammonia exposure, decreased aspartate (P = 0.016), glutamate (P = 0.030) and increased ornithine (P = 0.002) were found in the ammonia-removing liver, and after high ammonia (35 mg/m3) exposure, glutamine synthetase (GS) expression was increased (P = 0.012). An increased glutamate (P = 0.004) and decreased glutaminase (GLS) expression (P = 0.083) were observed in the lungs after high ammonia exposure. There was also an increasing trend of glutamine in the kidneys after high ammonia exposure (P = 0.066). For branched-chain amino acid (BCAA) catabolism, high ammonia exposure increased BCAA content in both the lungs and muscle (P < 0.05), whereas below 25 mg/m3 ammonia exposure increased BCAA only in the lungs (P < 0.05). The expression of BCAA transaminase (BCAT1/2) and dehydrogenase complex (BCKDHA/B and DBT) were inhibited to a varying degree in the liver, lungs and muscle after above 25 mg/m3 ammonia exposure, especially high ammonia exposure. The expression of BCKDH complex and glutamate-glutamine metabolism-related genes were highly expressed in the liver, followed by the lungs and muscle (P < 0.01), whereas the BCAT2 expression was highest in the lungs (P = 0.002). Altogether, low ammonia exposure sufficed to evoke the urea cycle to detoxify ammonia in the liver. The process of ammonia removal in the liver and potential ability of the lungs to detoxify ammonia were enhanced with increasing ammonia. Furthermore, high ammonia exposure impaired the BCAA catabolism and decreased the transcripts of the BCAA catabolism-related enzymes, resulting in high BCAA content in extrahepatic tissues. Therefore, with aerial ammonia increasing, an increased urea cycle and glutamine synthesis were ammonia defensive strategies, and high ammonia exposure impaired the BCAA catabolism.

17.
mSystems ; 6(5): e0072521, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34546071

ABSTRACT

The neonatal period is a crucial time during development of the mammalian small intestine. Moreover, neonatal development and maturation of the small intestine are exceptionally important for early growth, successful weaning, and postweaning growth and development, in order to achieve species-specific milestones. Although several publications recently characterized intestinal epithelial cell diversity at the single-cell level, it remains unclear how differentiation and molecular interactions take place between types and subtypes of epithelial cells during the neonatal period. A single-cell RNA sequencing (scRNA-seq) survey of 40,186 ileal epithelial cells and proteomics analysis of ileal samples at 6 time points in the swine neonatal period were performed. The results revealed previously unknown developmental changes: specific increases in undifferentiated cells, unique enterocyte differentiation, and time-dependent reduction in secretory cells. Moreover, we observed specific transcriptional factors, ligand-receptor pairs, G protein-coupled receptors, transforming growth factor ß, bone morphogenetic protein signaling pathways, and gut mucosal microbiota playing vital roles in ileal development during the neonatal window. This work offers new comprehensive information regarding ileal development throughout the neonatal period. Reference to this data set may assist in the creation of novel interventions for inflammation-, metabolism-, and proliferation-related gut pathologies. IMPORTANCE We found previously unknown neonatal ileum developmental potentials: specific increases in undifferentiated cells, unique enterocyte differentiation, and time dependent reduction in secretory cells. Specific transcriptional factors (TFs), ligand-receptor pairs, G protein-coupled receptors, transforming growth factor ß, bone morphogenetic protein signaling pathways, and the gut mucosal microbiota are involved in this process. Our results may assist in the creation of novel interventions for inflammation-, metabolism-, and proliferation-related gut pathologies.

18.
Front Nutr ; 8: 689818, 2021.
Article in English | MEDLINE | ID: mdl-34179063

ABSTRACT

Ammonia, an atmospheric pollutant in the air, jeopardizes immune function, and perturbs metabolism, especially lipid metabolism, in human and animals. The roles of intestinal microbiota and its metabolites in maintaining or regulating immune function and metabolism are irreplaceable. Therefore, this study aimed to investigate how aerial ammonia exposure influences hindgut microbiota and its metabolites in a pig model. Twelve growing pigs were treated with or without aerial ammonia (35 mg/m3) for 25 days, and then microbial diversity and microbiota-derived metabolites were measured. The results demonstrated a decreasing trend in leptin (p = 0.0898) and reduced high-density lipoprotein cholesterol (HDL-C, p = 0.0006) in serum after ammonia exposure. Besides, an upward trend in hyocholic acid (HCA), lithocholic acid (LCA), hyodeoxycholic acid (HDCA) (p < 0.1); a downward trend in tauro-deoxycholic acid (TDCA, p < 0.1); and a reduced tauro-HDCA (THDCA, p < 0.05) level were found in the serum bile acid (BA) profiles after ammonia exposure. Ammonia exposure notably raised microbial alpha-diversity with higher Sobs, Shannon, or ACE index in the cecum or colon and the Chao index in the cecum (p < 0.05) and clearly exhibited a distinct microbial cluster in hindgut indicated by principal coordinate analysis (p < 0.01), indicating that ammonia exposure induced alterations of microbial community structure and composition in the hindgut. Further analysis displayed that ammonia exposure increased the number of potentially harmful bacteria, such as Negativibacillus, Alloprevotella, or Lachnospira, and decreased the number of beneficial bacteria, such as Akkermansia or Clostridium_sensu_stricto_1, in the hindgut (FDR < 0.05). Analysis of microbiota-derived metabolites in the hindgut showed that ammonia exposure increased acetate and decreased isobutyrate or isovalerate in the cecum or colon, respectively (p < 0.05). Unlike the alteration of serum BA profiles, cecal BA data showed that high ammonia exposure had a downward trend in cholic acid (CA), HCA, and LCA (p < 0.1); a downward trend in deoxycholic acid (DCA) and HDCA (p < 0.05); and an upward trend in glycol-chenodeoxycholic acid (GCDCA, p < 0.05). Mantel test and correlation analysis revealed associations between microbiota-derived metabolites and ammonia exposure-responsive cecal bacteria. Collectively, the findings illustrated that high ammonia exposure induced the dysbiotic microbiota in the hindgut, thereby affecting the production of microbiota-derived short-chain fatty acids and BAs, which play a pivotal role in the modulation of host systematic metabolism.

19.
Animals (Basel) ; 11(3)2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33673472

ABSTRACT

This study aimed to investigate whether dietary bile acid (BA) supplements can improve growth performance and lipid metabolism in heat-stressed broiler chickens. A total of 288 Arbor Acres broilers were blocked by BW and then randomly allocated into 4 treatments at 21 days of age. Birds reared under 32 °C had a higher cloacal temperature (p = 0.01), faster respiratory rate (p < 0.001), and a greatly reduced average daily feed intake (ADFI, p = 0.016), average daily gain (ADG, p = 0.006), final body weight (FBW, p = 0.008), and feed conversion rate (FCR, p = 0.004). In heat stress (HS) birds, the breast muscle rate (p = 0.006) and pH 24 h postmortem (p = 0.065) were lower, and the shear force was higher (p = 0.027). Dietary BA supplements tended to increase the breast muscle rate (p = 0.075) without affecting the growth performance and serum lipids (p > 0.05). Serum total bile acid (TBA) was roughly duplicated after BA supplements (p = 0.001). In the liver, total cholesterol was lower (p = 0.046), and triglycerides were higher (p = 0.04) in the HS birds, whereas the expression of SREBP-1c showed an increasing trend (p = 0.06). In contrast, dietary BA decreased triglycerides and the expressions of hepatic SREBP-1c and FAS in the liver (p < 0.05). In summary, mild HS causes hepatic lipid accumulation without obvious tissue damages, whereas BA has positive effects on relieving abnormal lipid metabolism, indicating that BA as a nutritional strategy has a certain potential in alleviating HS.

20.
Environ Res ; 191: 110204, 2020 12.
Article in English | MEDLINE | ID: mdl-32937176

ABSTRACT

Hydrogen sulfide (H2S) is a popular toxic environmental gas and industrial pollutant, which can be harmful to multiple organ systems of both human and livestock, especially to the respiratory system. However, the injury mechanism of H2S exposure to lung remains poorly understood. In this study, pig lung was selected as a H2S exposure model for the first time. We first examined the histological damage and the mRNA expression of pro-inflammatory genes of lung in pigs exposed to H2S. Histopathology change and increased mRNA level of pro-inflammatory cytokines demonstrated that H2S exposure indeed induced inflammatory injury in the porcine lung. We then performed TMT-based quantitative proteomics analysis to probe the injury molecular mechanism. The proteomics results showed that 526 proteins have significant changes in abundance between control and H2S treated swine. Further validation analysis of some H2S responsive proteins using both Real-time quantitative PCR and western blotting demonstrated that proteomics data are reliable. KEGG pathway analysis revealed that these proteins were involved in antigen processing and presentation, complement and coagulation cascade, IL-17 signaling pathway, ferroptosis and necroptosis. Our data suggest that H2S exposure induced immune suppression, inflammatory response and cell death. These findings provide a new insight into the complexity mechanisms of H2S induced lung injury, and offer therapeutic potential as drug targets with a view towards curing the intoxication caused by H2S.


Subject(s)
Hydrogen Sulfide , Proteomics , Animals , Cell Death , Hydrogen Sulfide/toxicity , Inflammation/chemically induced , Lung , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...