Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Skeletal Radiol ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411702

ABSTRACT

For Caucasian women, the QCT (quantitative CT) lumbar spine (LS) bone mineral density (BMD) cutpoint value for classifying osteoporosis is 80 mg/ml. At the age of approximate 78 years, US Caucasian women QCT LS BMD population mean is 80 mg/ml, while that of Chinese women and Japanese women is around 50 mg/ml. Correlation analyses show, for Chinese women and Japanese women, QCT LS BMD of 45 mg/ml corresponds to the dual-energy X-ray absorptiometry cutpoint value for classifying osteoporosis. For Chinese and Japanese women, if QCT LS BMD 80 mg/ml is used as the threshold to classify osteoporosis, then the specificity of classifying subjects with vertebral fragility fracture into the osteoporotic group is low, whereas threshold of 45 mg/ml approximately achieve a similar separation for women with and without vertebral fragility fracture as the reports for Caucasian women. Moreover, by using 80mg/ml as the cutpoint value, LS QCT leads to excessively high prevalence of osteoporosis for Chinese women, with the discordance between hip dual-energy X-ray absorptiometry and LS QCT measures far exceeding expectation. Considering the different bone properties and the much lower prevalence of fragility fractures in the East Asian women compared with Caucasians, we argue that the QCT cutpoint value for classifying osteoporosis among older East Asian women will be close to and no more than 50 mg/ml LS BMD. We suggest that it is also imperative the QCT osteoporosis classification criterion for East Asian male LS, and male and female hips be re-examined.

2.
Quant Imaging Med Surg ; 14(1): 1010-1021, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223080

ABSTRACT

Background: Pulmonary nodular consolidation (PN) and pulmonary cavity (PC) may represent the two most promising imaging signs in differentiating multidrug-resistant (MDR)-pulmonary tuberculosis (PTB) from drug-sensitive (DS)-PTB. However, there have been concerns that literature described radiological feature differences between DS-PTB and MDR-PTB were confounded by that MDR-PTB cases tend to have a longer history. This study seeks to further clarify this point. Methods: All cases were from the Guangzhou Chest Hospital, Guangzhou, China. We retrieved data of consecutive new MDR cases [n=46, inclusive of rifampicin-resistant (RR) cases] treated during the period of July 2020 and December 2021, and according to the electronic case archiving system records, the main PTB-related symptoms/signs history was ≤3 months till the first computed tomography (CT) scan in Guangzhou Chest Hospital was taken. To pair the MDR-PTB cases with assumed equal disease history length, we additionally retrieved data of 46 cases of DS-PTB patients. Twenty-two of the DS patients and 30 of the MDR patients were from rural communities. The first CT in Guangzhou Chest Hospital was analysed in this study. When the CT was taken, most cases had anti-TB drug treatment for less than 2 weeks, and none had been treated for more than 3 weeks. Results: Apparent CT signs associated with chronicity were noted in 10 cases in the DS group (10/46) and 9 cases in the MDR group (10/46). Thus, the overall disease history would have been longer than the assumed <3 months. Still, the history length difference between DS patients and MDR patients in the current study might not be substantial. The lung volume involvement was 11.3%±8.3% for DS cases and 8.4%±6.6% for MDR cases (P=0.022). There was no statistical difference between DS cases and MDR cases both in PN prevalence and in PC prevalence. For positive cases, MDR cases had more PN number (mean of positive cases: 2.63 vs. 2.28, P=0.38) and PC number (mean of positive cases: 2.14 vs. 1.38, P=0.001) than DS cases. Receiver operating characteristic curve analysis shows, PN ≥4 and PC ≥3 had a specificity of 86% (sensitivity 25%) and 93% (sensitivity 36%), respectively, in suggesting the patient being a MDR cases. Conclusions: A combination of PN and PC features allows statistical separation of DS and MDR cases.

4.
Environ Sci Pollut Res Int ; 30(7): 17585-17596, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36197609

ABSTRACT

Oxygen (O2) in the air is a green oxidant, and utilization of air for pollutant removal is highly desired. Herein, we report the preparation and utilization of a novel biomass-based three-dimensional (3D) Ni@NiO/carbon composite for the electro-activation of O2 under room condition. The carbon-coated Ni@NiO nanoparticles are fabricated on a hierarchical 3D porous loofah sponge-derived carbon (LSC) support as the bifunctional catalyst for the activation of O2 via both the electro-oxidation and electro-reduction reactions. An electrocatalytic air oxidation coupling system is constructed with the Ni@NiO/LSC shell-core electrodes for pollutant degradation. A variety of organic pollutants, including pharmaceutics and personal care products (PPCPs), dyes, phenolic compounds, and real waters are mineralized by more than 60% with significantly enhanced biodegradability. Notably, the coupling system obtains high mineralization efficiency of 70.2 ± 1.9% on landfill leachate with significant biodegradability enhancement. The specific energy consumptions of the coupling system are only 6.8 ± 0.7 to 60.2 ± 3.6 kWh kg-TOC-1 in mineralizing different pollutants. The hollow structure of the LSC fibers endows the loaded Ni@NiO with superior intrinsic catalytic activity, which is associated with low reaction resistance and facile electron transfer. The Ni@NiO on LSC presents an electrocatalytic wet air oxidation (ECWAO) catalytic activity higher by 35.8% and cathodic air oxidation (CAO) catalytic activity higher by 22.7% as compared to that loaded on commercial graphite felt.


Subject(s)
Environmental Pollutants , Graphite , Luffa , Carbon/chemistry , Oxidation-Reduction , Graphite/chemistry , Oxygen
5.
Biochimie ; 95(2): 354-8, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23116714

ABSTRACT

Protein-DNA interactions are involved in many biological processes essential for gene expression and regulation. To understand the molecular mechanisms of protein-DNA recognition, it is crucial to analyze and identify DNA-binding residues of protein-DNA complexes. Here, we proposed a novel descriptor shape string and another two related features shape string PSSM and shape string pair composition to characterize DNA-binding residues. We employed the new features and the position-specific scoring matrix (PSSM) for modeling and prediction. The results of a benchmark dataset showed that our approach significantly improved the accuracy of the predictor. The overall accuracy of our approach reached 85.86% with 85.02% sensitivity and 86.02% specificity. The results also demonstrated that shape string is a powerful descriptor for the prediction of DNA-binding residues. The additional two related features enhanced the predictive value.


Subject(s)
Algorithms , DNA/chemistry , Position-Specific Scoring Matrices , Proteins/chemistry , Software , Amino Acid Sequence , Binding Sites , Databases, Protein , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Sensitivity and Specificity
6.
Mol Cell Proteomics ; 11(7): M111.016808, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22415040

ABSTRACT

Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold.


Subject(s)
Algorithms , Computational Biology/methods , Membrane Proteins/chemistry , Amino Acid Sequence , Databases, Protein , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Proteus mirabilis , Sequence Alignment , Sequence Analysis, Protein , Sequence Homology, Amino Acid , Structural Homology, Protein
7.
Biochimie ; 94(3): 847-53, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22182488

ABSTRACT

Mycobacterium, the most common disease-causing genus, infects billions of people and is notoriously difficult to treat. Understanding the subcellular localization of mycobacterial proteins can provide essential clues for protein function and drug discovery. In this article, we present a novel approach that focuses on local sequence information to identify localization motifs that are generated by a merging algorithm and are selected based on a binomially distributed model. These localization motifs are employed as features for identifying the subcellular localization of mycobacterial proteins. Our approach provides more accurate results than previous methods and was tested on an independent dataset recently obtained from an experimental study to provide a first and reasonably accurate prediction of subcellular localization. Our approach can also be used for large-scale prediction of new protein entries in the UniportKB database and of protein sequences obtained experimentally. In addition, our approach identified many local motifs involved with the subcellular localization that also interact with the environment. Thus, our method may have widespread applications both in the study of the functions of mycobacterial proteins and in the search for a potential vaccine target for designing drugs.


Subject(s)
Bacterial Proteins/metabolism , Computational Biology/methods , Mycobacterium/metabolism , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...