Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
World Neurosurg ; 185: e431-e441, 2024 05.
Article in English | MEDLINE | ID: mdl-38360209

ABSTRACT

OBJECTIVE: To investigate the influence of sacroiliac interosseous ligament tension and laxity on the biomechanics of the lumbar spine. METHODS: A static analysis of a three-dimensional finite element model of the Lumbar-Pelvic is conducted to verify the model's effectiveness. Adjusting the sacroiliac ligament's elasticity modulus under a 10Nm lumbar flexion/extension moment, it simulates ligament tension/laxity to calculate vertebrae displacements, intervertebral disc stress and deformation, nucleus pulposus pressure, facet joint force, and ligament stress. RESULTS: With the elastic modulus of the sacroiliac ligament changing by +50%, -50%, and -90%, the angular displacement of vertebra 3 in forward flexion changes by +1.64%, -4.84%, and -42.3%, and the line displacements change by +5.7%, -16.4%, and -144.9%, respectively; and the angular displacements in backward extension change by +0.2%, -0.6%, -5.9% and the line displacements change by +5.5%, -14.3%, and -125.8%. However, the angular displacement and center distance between adjacent vertebrae do not change, leading to no change in the maximum stress of the intervertebral disc and the maximum pressure in the nucleus pulposus. Flexion and extension directly affect the deformation and stress magnitude and distribution in the lumbar spine. CONCLUSIONS: While sacroiliac interosseous ligament laxity and tension have little effect on disc deformation and stress, and nucleus pulposus pressure, they reduce the stability of the lumbar-sacral vertebrae. In a forward flexion state, the lumbar ligaments bear a large load and are prone to laxity, thereby increasing the risk of lumbar injury.


Subject(s)
Finite Element Analysis , Ligaments, Articular , Lumbar Vertebrae , Sacroiliac Joint , Humans , Biomechanical Phenomena/physiology , Sacroiliac Joint/physiopathology , Ligaments, Articular/physiopathology , Ligaments, Articular/physiology , Range of Motion, Articular/physiology , Joint Instability/physiopathology , Elastic Modulus , Stress, Mechanical
2.
Article in English | MEDLINE | ID: mdl-38235712

ABSTRACT

The study aimed to investigate the dynamic characteristics of the cervical spine and determine the effect of the material properties of the cervical spinal components on it. A finite element model of the head-cervical spine was developed based on CT scan data, and the first six orders of modes (e.g. flexion-extension, lateral bending, and vertical, etc.) were verified by experimental and simulation studies. The material sensitivity study was conducted by varying elasticity modulus of cervical hard tissues (cortical bone, cancellous bone, endplates, and posterior elements) and soft tissues (intervertebral disc and ligaments). The results showed that increasing the elastic modulus of ligaments by 4 times increased the natural frequency by 77%, while increasing that of cancellous bone by 4 times only increased the natural frequency by 6%. In the axial mode, the cervical spine had not only axial deformation but also anterior-posterior deformation, with the largest deformation located at the intervertebral disc C6-C7. Decreasing the elastic modulus of a component in soft tissues by 80% increased modal displacement by up to 62%. The material properties of the intervertebral discs and ligaments had opposite effects on the modal displacement and deformation of the cervical spine. Low cervical discs were more susceptible to injury in a vertical vibration environment. Cervical spine dynamics were more sensitive to soft tissue material properties than to hard tissue material properties. Disc degeneration could reduce the range of vibratory motion of the cervical spine, thereby reducing the ability of the cervical spine to cushion head impacts.

3.
Clin Transl Oncol ; 26(6): 1368-1383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38123874

ABSTRACT

BACKGROUND: The cancer-associated biological mechanisms and the implementation of immunotherapy are heavily impacted by the activities of T cells, consequently influencing the effectiveness of therapeutic interventions. Nevertheless, the mechanistic actions of T-cell proliferation in response to immunotherapy and the overall prognosis of individuals diagnosed with hepatocellular carcinoma (HCC) remains insufficiently understood. The present work seeks to present a comprehensive analysis immune landscape in the context of HCC. METHODS: To achieve this objective, both clinical data and RNA sequencing data were acquired from authoritative databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). RESULTS: Through the utilization of consensus clustering techniques, distinct molecular subtypes associated with T-cell proliferation were delineated. Following this, seven genes of prognostic significance were identified via a combination of Cox and Lasso regression analyses. By integrating these genes into a prognostic signature, the predictive capability of the model was verified through an examination of internal and external datasets. Moreover, immunohistochemistry and qRT-PCR tests have verified the reliability of prognostic markers. Notably, the high-risk group exhibited elevated expression of immune checkpoint genes as well as higher benefit in terms of drug sensitivity testing, as determined by the Chi-square test (P < 0.001). The risk score derived from the prognostic signature depicted considerable efficacy in predicting the survival outcomes of HCC cases. CONCLUSIONS: Overall, prognostic markers may become valuable predictive tool for individuals diagnosed with HCC, allowing for the prediction of their prognosis as well as the assessment of their immunological condition and response to immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Immunotherapy , Liver Neoplasms , T-Lymphocytes , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/mortality , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Prognosis , Immunotherapy/methods , T-Lymphocytes/immunology , Male , Female , Middle Aged , Biomarkers, Tumor/genetics
4.
Brain Res ; 1822: 148666, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37949309

ABSTRACT

Neuroinflammation induced by early brain injury (EBI) seriously affects the prognosis of patients after subarachnoid hemorrhage (SAH). Pyroptosis can aggravate inflammatory injury by promoting the secretion of inflammatory cytokines. Meanwhile, STAT3 plays a critical role in the inflammatory response of EBI after SAH. However, whether it plays a pyroptotic role in SAH is mainly unknown. This study aimed to explore the mechanism of STAT3 in pyroptosis in EBI after SAH. C57BL/6J mice were used to establish the SAH model. Brain tissues were collected at different time points for q-RT-PCR and western blot to detect the expression level of STAT3. After intracerebroventricular injection of STAT3 inhibitor S3I-201, they were divided into sham, SAH, SAH + Vehicle, and SAH + S3I-201. Then, the SAH grade, cerebral edema content, blood-brain barrier (BBB) damage, and neurological scores of mice in each group were detected. qRT-PCR and western blot were used to detect related genes and proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of IL-18 and IL-1ß. Immunofluorescence staining was used to observe the expression level of proteins. At the same time, S3I-201 was added to the primary neuron cells of the culture medium containing OxyHb to simulate the in vitro experiment, and the relevant indicators consistent with the in vivo experiment were detected. The expression of STAT3 was upregulated after SAH. Inhibition of STAT3 with S3I-201 attenuated neurological deficits, cerebral edema, and BBB damage after SAH. In addition, S3I-201 can also reduce the expression of pyroptosis-related inflammasomes such as GSDMD, NLRP3, Caspase 1, and AIM2 after SAH and the neurological damage caused by IL-18 and IL-1ß. Further studies have shown that STAT3 regulates pyroptosis by promoting the nuclear translocation of NF-κB p65. Our finding demonstrated that STAT3 regulates neuronal pyroptosis in EBI after SAH. Inhibition of STAT3 may be a potential target to attenuate the damage that triggers neuroinflammation after SAH.


Subject(s)
Brain Edema , Brain Injuries , Pyroptosis , Subarachnoid Hemorrhage , Animals , Mice , Brain Edema/etiology , Brain Edema/metabolism , Brain Injuries/metabolism , DNA-Binding Proteins/metabolism , Interleukin-18/metabolism , Mice, Inbred C57BL , Neuroinflammatory Diseases , Neurons/metabolism , Signal Transduction/physiology , STAT3 Transcription Factor/metabolism , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/pathology
5.
Front Mol Biosci ; 10: 1297198, 2023.
Article in English | MEDLINE | ID: mdl-38152110

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related death worldwide, with a serious impact on human health and life. The identification of NSCLC at an early stage is a formidable task that frequently culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited protein-coding capacity, and its expression is out of balance in many cancers, especially NSCLC. A large number of studies have reported that lncRNA acts a vital role in regulating angiogenesis, invasion, metastasis, and the proliferation and apoptosis of tumor cells, affecting the occurrence and development of NSCLC. Abundant evidence demonstrates that lncRNAs may serve as potential biomarkers for NSCLC diagnosis and prognosis. In this review, we summarize the latest progress in characterizing the functional mechanism of lncRNAs involved in the development of NSCLC and further discuss the role of lncRNAs in NSCLC therapy and chemotherapy resistance. We also discuss the advantages, limitations, and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the management of NSCLC.

6.
Sci Rep ; 13(1): 19265, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935703

ABSTRACT

Classic heatstroke (CHS) is a life-threatening illness characterized by extreme hyperthermia, dysfunction of the central nervous system and multiorgan failure. Accurate predictive models are useful in the treatment decision-making process and risk stratification. This study was to develop and externally validate a prediction model of survival for hospitalized patients with CHS. In this retrospective study, we enrolled patients with CHS who were hospitalized from June 2022 to September 2022 at 3 hospitals in Southwest Sichuan (training cohort) and 1 hospital in Central Sichuan (external validation cohort). Prognostic factors were identified utilizing least absolute shrinkage and selection operator (LASSO) regression analysis and multivariate Cox regression analysis in the training cohort. A predictive model was developed based on identified prognostic factors, and a nomogram was built for visualization. The areas under the receiver operator characteristic (ROC) curves (AUCs) and the calibration curve were utilized to assess the prognostic performance of the model in both the training and external validation cohorts. The Kaplan‒Meier method was used to calculate survival rates. A total of 225 patients (median age, 74 [68-80] years) were included. Social isolation, self-care ability, comorbidities, body temperature, heart rate, Glasgow Coma Scale (GCS), procalcitonin (PCT), aspartate aminotransferase (AST) and diarrhea were found to have a significant or near-significant association with worse prognosis among hospitalized CHS patients. The AUCs of the model in the training and validation cohorts were 0.994 (95% [CI], 0.975-0.999) and 0.901 (95% [CI], 0.769-0.968), respectively. The model's prediction and actual observation demonstrated strong concordance on the calibration curve regarding 7-day survival probability. According to K‒M survival plots, there were significant differences in survival between the low-risk and high-risk groups in the training and external validation cohorts. We designed and externally validated a prognostic prediction model for CHS. This model has promising predictive performance and could be applied in clinical practice for managing patients with CHS.


Subject(s)
Heat Stroke , Aged , Humans , Body Temperature , Heat Stroke/therapy , Nomograms , Prognosis , Retrospective Studies , Aged, 80 and over
7.
Article in English | MEDLINE | ID: mdl-37668064

ABSTRACT

Due to ethical issues and simplification of traditional biomechanical models, experimental methods and traditional computer methods were difficult to quantify the effects of foot excitation and shin posture on vibration behavior of the entire spine inside a seated human body under vertical whole-body vibration. This study developed and verified different three-dimensional (3D) finite element (FE) models of seated human body with detailed anatomical structure under the biomechanical characteristics to predict vibration behavior of the entire spine inside a seated human body with different foot excitation (with and without vibration) and shin posture (vertical and tilt posture). Random response analysis was performed to study the transmissibility of the entire spine to seat under vertical white noise excitation between 0 and 20 Hz at 0.5 m/s2 r.m.s. The results showed that although the foot excitation could reduce the fore-aft transmissibility in the cervical spine (23% reduction), it could significantly increase that in the lumbar spine (52% increase), which resulted in complex alternating stresses at lumbar spine and made the lumbar spine more vulnerable to injury in long-term vibration environment. Moreover, the shin tilt posture made the maximum fore-aft transmissibility in the lumbar spine move to the upper lumbar spine. The study provided new insights into the influence of foot excitation and shin posture on the vibration behavior of the entire spine inside a seated human body. Foot excitation exposed the lumbar spine to complex alternating stresses and made it more vulnerable to injury in long-term whole body vibration.

8.
World J Clin Cases ; 11(25): 6000-6004, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37727473

ABSTRACT

BACKGROUND: The mixed lineage leukemia (MLL)-eleven-nineteen lysine-rich leukemia (ELL) fusion gene is a rare occurrence among the various MLL fusion genes. We present the first case in which myeloid sarcoma (MS) was the only manifestation of adult MLL-ELL-positive acute myeloid leukemia (AML). CASE SUMMARY: We report a case of a 33-year-old male patient who was admitted in June 2022 with a right occipital area mass measuring approximately 7 cm × 8 cm. Blood work was normal. The patient underwent right occipital giant subscalp mass excision and incisional flap grafting. Immunohistochemistry was positive for myeloperoxidase, CD43 and CD45 and negative for CD3, CD20, CD34, and CD56. The bone marrow aspirate showed hypercellularity with 20% myeloblasts. Flow cytometry showed that myeloblasts accounted for 27.21% of the nucleated cells, which expressed CD33, CD38, and CD117. The karyotype was 46, XY, t (11, 19) (q23; p13.1), -12, + mar/46, XY. Next-generation sequencing showed a fusion of MLL exon 7 to exon 2 of ELL. A diagnosis of MLL-ELL-positive AML (M2 subtype) with subcutaneous MS was made. CONCLUSION: MLL-ELL-positive AML with MS is a rare clinical entity. Additional research is needed to elucidate the molecular mechanisms of the pathogenesis of MS.

9.
Heliyon ; 9(7): e17390, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539103

ABSTRACT

Ischemia/reperfusion injury (I/R) is the major cause of acute kidney injury, which becomes a global health problem. The effects of asiaticoside, as an anti-inflammatory drug, on renal ischemia-reperfusion injury have not been well defined. After the CD4+ cells were treated with asiaticoside, the CD4+CD25+FOXP3+ Treg cell differentiation was detected by flow cytometry. The viability and release of inflammatory factors of CD4+CD25+FOXP3+ Treg cell were detected by CCK-8 and ELISA. Renal I/R injury mice model was established, and the mice were pre-treated with asiaticoside or CD25 antibody or infused with Treg cells. The histological changes of renal tissue were evaluated by Hematoxylin-eosin, PAS, and Masson staining. The renal function markers were evaluated by colorimetry, the release of inflammatory factors was determined by ELISA. The Th17 and Treg cells in the blood and spleen were quantified by flow cytometry. The expressions of FOXP3 and RoR-γt in renal tissues were determined by western blotting. Asiaticoside promoted CD4+CD25+FOXP3+ Treg cell differentiation, increased the cell viability and down-regulated TNF-α, IL-1ß, and IL-6, while up-regulated IL-10 of CD4+CD25+FOXP3+ Treg cells. Moreover, asiaticoside ameliorated the histological damage, decreased the Th17 cells and increased Treg cells, and down-regulated the TNF-α, IL-1ß, IL-6, blood urea nitrogen, serum creatinine, and RoR-γt, while up-regulated IL-10 and FOXP3 of renal I/R injury mice. Effect of asiaticoside on renal I/R injury mice was reversed by CD25 antibody whose role was further reversed by Treg cell infusing. In conclusion, asiaticoside ameliorated renal I/R injury due to promoting CD4+CD25+FOXP3+ Treg cell differentiation.

10.
Front Pharmacol ; 13: 949566, 2022.
Article in English | MEDLINE | ID: mdl-36386184

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors worldwide. Clinical success is suboptimal owing to late diagnosis, limited treatment options, high recurrence rates, and the development of drug resistance. MicroRNAs (miRNAs), a range of small endogenous non-coding RNAs that are 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence has revealed the pivotal roles of miRNAs in regulating cell proliferation, migration, invasion, and metastasis in NSCLC. Recently, several studies have demonstrated that miRNAs are strongly associated with resistance to anti-cancer drugs, ranging from traditional chemotherapeutic and immunotherapy drugs to anti-vascular drugs, and even during radiotherapy. In this review, we briefly introduce the mechanism of miRNA dysregulation and resistance to anti-tumor therapy in NSCLC, and summarize the role of miRNAs in the malignant process of NSCLC. We then discuss studies of resistance-related miRNAs in chemotherapy, radiotherapy, targeted therapy, immunotherapy, and anti-vascular therapy in NSCLC. Finally, we will explore the application prospects of miRNA, an emerging small molecule, for future anti-tumor therapy. This review is the first to summarize the latest research progress on miRNAs in anti-cancer drug resistance based on drug classification, and to discuss their potential clinical applications.

11.
Cells ; 11(20)2022 10 12.
Article in English | MEDLINE | ID: mdl-36291069

ABSTRACT

Non-small-cell lung cancer (NSCLC) is one of the most common malignancies and the leading causes of cancer-related death worldwide. Despite many therapeutic advances in the past decade, NSCLC remains an incurable disease for the majority of patients. Molecular targeted therapies and immunotherapies have significantly improved the prognosis of NSCLC. However, the vast majority of advanced NSCLC develop resistance to current therapies and eventually progress. In this review, we discuss current and potential therapies for NSCLC, focusing on targeted therapies and immunotherapies. We highlight the future role of metabolic therapies and combination therapies in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Molecular Targeted Therapy , Immunotherapy , Biomarkers
12.
Front Oncol ; 12: 986358, 2022.
Article in English | MEDLINE | ID: mdl-36158684

ABSTRACT

Background: For patients with stage T1-T2 esophageal squamous cell carcinoma (ESCC), accurately predicting lymph node metastasis (LNM) remains challenging. We aimed to investigate the performance of machine learning (ML) models for predicting LNM in patients with stage T1-T2 ESCC. Methods: Patients with T1-T2 ESCC at three centers between January 2014 and December 2019 were included in this retrospective study and divided into training and external test sets. All patients underwent esophagectomy and were pathologically examined to determine the LNM status. Thirty-six ML models were developed using six modeling algorithms and six feature selection techniques. The optimal model was determined by the bootstrap method. An external test set was used to further assess the model's generalizability and effectiveness. To evaluate prediction performance, the area under the receiver operating characteristic curve (AUC) was applied. Results: Of the 1097 included patients, 294 (26.8%) had LNM. The ML models based on clinical features showed good predictive performance for LNM status, with a median bootstrapped AUC of 0.659 (range: 0.592, 0.715). The optimal model using the naive Bayes algorithm with feature selection by determination coefficient had the highest AUC of 0.715 (95% CI: 0.671, 0.763). In the external test set, the optimal ML model achieved an AUC of 0.752 (95% CI: 0.674, 0.829), which was superior to that of T stage (0.624, 95% CI: 0.547, 0.701). Conclusions: ML models provide good LNM prediction value for stage T1-T2 ESCC patients, and the naive Bayes algorithm with feature selection by determination coefficient performed best.

13.
Front Oncol ; 12: 955353, 2022.
Article in English | MEDLINE | ID: mdl-36059713

ABSTRACT

Background and objectives: Esophageal squamous cell carcinoma (ESCC) is the most common pathological type of esophageal malignancy in most regions of the world. The study aimed to identify risk factors and develop a predictive model for ESCC following surgical resection. Patients and methods: A total of 533 ESCC patients who underwent surgical resection from Suining Central Hospital were enrolled in the study. Cox proportional hazards regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression were performed to identify significant prognostic factors. A prognostic model was constructed, and the receiver operating characteristic (ROC) curve, concordance index (C-index), and decision cure analysis (DCA) were used to evaluate the discrimination and calibration of the prognostic model. Subsequently, we built a nomogram for overall survival (OS) incorporating the prognostic factors, and a calibration plot was employed to assess the consistency between the predicted survival and the observed survival. Based on the model risk score, we split the patients into two subgroups, low-risk and high-risk, and we analyzed the survival time of these two groups using Kaplan-Meier (K-M) survival plots. Results: Five independent prognosis factors were identified as independent risk factors for OS in ESCC patients who underwent surgical resection. The C-index, ROC curve, and DCA showed that the prognostic model had good predictive accuracy and discriminatory power in the training cohort and validation cohort than other clinical features. A nomogram consisting of prognosis factors showed some superior net benefit. K-M survival plots showed significant differences in OS between the low-risk and high-risk groups. Similar results were observed in the subgroup analysis based on age, grade, and stage. Univariate and multivariate Cox regression analyses revealed that both risk score and risk group are independent prognostic factors in the patient cohort. Conclusions: This study put forward a novel prognostic model based on clinical features; biopsy data and blood biomarkers may represent a promising tool for estimating OS in ESCC patients.

14.
Nanoscale ; 14(38): 14169-14177, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36124558

ABSTRACT

As newly developed 2D materials, due to their advanced physical/chemical properties and potential applications in energy storage, electromagnetic interference shielding, electronics and photon-detectors, MXenes have attracted extensive attention in recent years. MXenes are synthesized by selectively etching the A element from MAX phases using hydrochloric acid and lithium fluoride, so hardly any pure structures of MXenes (e.g. Ti2C, T3C2) exist. Usually, the surfaces of MXenes are terminated by -OH, -F, -O or other surface terminations. However, fundamental knowledge of the mechanical properties of MXenes, especially the effect of different functional groups, is limited due to the difficulty in mechanical testing. In this work, we studied the mechanical properties of a series of MXenes with emphasis on the effect of the functional groups. We took the most common MXene Tin+1CnO2 and Tin+1Cn(OH)2 as examples using molecular dynamics simulation. We evaluated the moduli of various MXenes and the influence of the functional groups. Besides, we studied the fracture behavior of MXenes with different functional groups. Based on our simulations, we found that the functional group did affect the mechanical and fracture properties. And we also proposed a possible approach to controlling the crack propagation path which would benefit the further design of nanodevices and nanocomposites.

15.
Stem Cell Res Ther ; 13(1): 367, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902956

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) can repair itself completely. However, most moderate and severe patients undergoing IRI-AKI progress to chronic kidney disease due to incomplete repair. The present study is aimed to investigate the role of bone marrow mesenchymal stem cell-derived exosomes (MSC-Exo) with indoleamine 2,3-dioxygenase (IDO) overexpression on incomplete repair in mice after IRI. METHODS: IRI mice was established by clamping the unilateral renal pedicles and challenged with MSC-Exo. Blood biochemical indexes and inflammation factors contents were measured by ELISA assay. Histopathological examinations were monitored by HE, Masson, Immunohistochemical and TUNEL staining. Immunofluorescence, flow cytometry and immunoblotting were used to detect the polarization of macrophages, respectively. RESULTS: As compared to sham operation mice, IRI mice showed high contents of serum BUN and Scr, and more severe damaged kidney tissues on days 1 and 3, which all gradually declined over time, showing the lowest level on day 7 after injury. Once treated with MSCs-Exo that could directly transfer to kidney tubular cells, the restoration of kidney functions significantly accelerated by contrast to IRI mice, and the promotive effects were more obvious in IDO-overexpressed MSCs-Exo (MSCs-Exo-IDO)-treated IRI mice. Furthermore, MSCs-Exo-IDO administration also accelerated renal tubular cells proliferation, restrained tubular cells apoptosis, fibrosis and inflammation factor secretions during self-repair process compared to IRI mice, whose effects were higher than MSCs-Exo-NC-challenged IRI mice and IDO overexpressing plasmid-injected IRI mice. Mechanistically, MSCs-Exo-NC and MSCs-Exo-IDO exposure promoted the polarization from M1 macrophage to M2 macrophage, leading to more anti-inflammatory factors production, and subsequently altered the inflammatory microenvironment of renal tubular cells, which facilitated the self-repair process in mice after IRI. CONCLUSION: MSCs-derived exosome accelerated renal self-repair in IRI mice by activating M2 macrophages polarization, which effects were amplified by IDO overexpression in MSCs. Potentially, genetically modified MSCs-Exo is an effective approach to improve renal self-repair in IRI-AKI mice.


Subject(s)
Acute Kidney Injury , Exosomes , Mesenchymal Stem Cells , Reperfusion Injury , Acute Kidney Injury/pathology , Acute Kidney Injury/therapy , Animals , Exosomes/pathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/pathology , Ischemia/pathology , Kidney/pathology , Macrophages/pathology , Mesenchymal Stem Cells/pathology , Mice , Reperfusion , Reperfusion Injury/pathology , Reperfusion Injury/therapy
16.
Opt Lett ; 47(12): 2955-2958, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35709024

ABSTRACT

Realizing a densely packed waveguide antenna array is of great importance in light detection and ranging (LIDAR), owing to its suppressed grating lobes. In this work, a low-cross-talk half-wavelength pitch silicon waveguide array is proposed and experimentally demonstrated. It has a periodic arrangement of silicon strip nanophotonic waveguides, between which deep-subwavelength silicon strips are placed. Our experimental results show that this array's cross talk suppression is nearly 20 dB and has a bandwidth covering a wavelength range from 1500 nm to 1560 nm. Our realization of a half-wavelength pitch waveguide array may offer a promising platform for studying integrated optical phased arrays for solid-state LIDAR with a very low grating lobe and thus potentially a large field of view.

17.
Bioengineered ; 13(4): 10235-10243, 2022 04.
Article in English | MEDLINE | ID: mdl-35435108

ABSTRACT

Ischemia/reperfusion injury (I/R) is the main causes of acute kidney injury (AKI), which is a global health concern. Evidence suggests that asiaticoside plays vital roles on anti-inflammatory and, anti-kidney fibrosis effects, and promotes tissue repair. However, the effects of asiaticoside on AKI caused by ischemia-reperfusion have not been well defined. Herein, we explored the protective effect of asiaticoside on renal ischemia-reperfusion injury (IRI) using in vivo and in vitro studies, and elucidated the potential mechanism of asiaticoside-mediated repair. Results showed that asiaticoside attenuated the levels of blood urea nitrogen (BUN) and serum creatinine (Scr) in the IRI model. Meanwhile, asiaticoside reduced the secretion of IL-6, IL-1ß and TNF-α, but increased IL-10 secretion in a dose-dependent manner. Treating Raw264.7 cells with lipopolysaccharide (LPS) induced an inflammatory response, but the LPS-induced effects were attenuated after administering asiaticoside. Furthermore, asiaticoside significantly inhibited the expression of inducible Nitric Oxide Synthase (iNOS) and promoted the expression of Arginase1 induced by LPS, which are the polarization marker proteins. In conclusion, this study shows that asiaticoside possesses protective action in AKI after ischemia-reperfusion, due to the inhibition of inflammatory mediators and promoting transformation of macrophages from M1 type to M2 type.


Subject(s)
Acute Kidney Injury , Reperfusion Injury , Acute Kidney Injury/drug therapy , Female , Humans , Ischemia/metabolism , Kidney , Lipopolysaccharides/metabolism , Male , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Triterpenes
18.
Antiviral Res ; 200: 105289, 2022 04.
Article in English | MEDLINE | ID: mdl-35301060

ABSTRACT

For human immunodeficiency virus 1 (HIV-1) to infect non-dividing cells, pre-integration complex (PIC) must be transported into the nucleus within the replication cycle. We previously reported that the karyopherin ß1 (KPNB1)-nucleoporin Pom121 pathway, related to the downstream process of PIC nuclear import, mediates efficient HIV-1 PIC nuclear import. Further, our earlier RNA transcriptome sequencing revealed that karyopherin α2 (KPNA2) was among the differentially expressed importin family members during monocyte to macrophage differentiation. Although PIC transport into the nucleus in HIV-1 has been widely studied, much remains to be understood about it. In this study, we confirmed our previous RNA sequencing results and found that HIV-1 replication was significantly lower in 293T cells with siRNA-mediated KPNA2 knockdown and higher in KPNA2-upregulated cells. Quantitative PCR indicated that viral replication was impaired during cDNA nuclear import. The N-terminal of the capsid protein p24 interacted with KPNA2, and KPNB1 participated in KPNA2-mediated PIC nuclear import. Disruption of the capsid-KPNA2 binding by overexpression of full-length p24 or p24 N-terminal impaired the PIC nuclear import. These results indicate that KPNA2 is an important upstream adaptor of the KPNB1-Pom121 axis, thereby mediating HIV-1 PIC nuclear transportation. KPNA2 is thus a potential target for HIV-1 antiviral treatment.


Subject(s)
HIV-1 , Active Transport, Cell Nucleus , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Nucleus/metabolism , HIV-1/genetics , HIV-1/metabolism , Humans , Karyopherins/metabolism , Membrane Glycoproteins/metabolism , Virus Replication , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
19.
Cells ; 11(3)2022 01 19.
Article in English | MEDLINE | ID: mdl-35159131

ABSTRACT

Non-small cell lung cancer is one of the most common types of malignances worldwide and the main cause of cancer-related deaths. Current treatment for NSCLC is based on surgical resection, chemotherapy, radiotherapy, and targeted therapy, with poor therapeutic effectiveness. In recent years, immune checkpoint inhibitors have applied in NSCLC treatment. A large number of experimental studies have shown that immune checkpoint inhibitors are safer and more effective than traditional therapeutic modalities and have allowed for the development of better guidance in the clinical treatment of advanced NSCLC patients. In this review, we describe clinical trials using ICI immunotherapies for NSCLC treatment, the available data on clinical efficacy, and the emerging evidence regarding biomarkers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...