Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786846

ABSTRACT

A narrow energy distribution is a prominent characteristic of field-emission cold cathodes. When applied in a vacuum electronic device, the cold cathode is fabricated over a large area and works under a high current and current density. It is interesting to see the energy distribution of the field emitter under such a working situation. In this work, the energy distribution spectra of a single carbon nanotube (CNT) and a CNT film were investigated across a range of currents, spanning from low to high. A consistent result indicated that, at low current emission, the CNT film (area: 0.585 mm2) exhibited a narrow electron energy distribution as small as 0.5 eV, similar to that of a single CNT, while the energy distribution broadened with increased current and voltage, accompanied by a peak position shift. The influencing factors related to the electric field, Joule heating, Coulomb interaction, and emission site over a large area were discussed to elucidate the underlying mechanism. The results provide guidance for the electron source application of nano-materials in cold cathode devices.

2.
Bone ; 185: 117132, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38789096

ABSTRACT

The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 269-274, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557379

ABSTRACT

OBJECTIVES: To observe the correlation between growth impairment induced by long-term oral glucocorticoids (GC) therapy and the ratio of FGF23/Klotho in children with primary nephrotic syndrome (PNS). METHODS: A prospective study was conducted on 56 children with GC-sensitive PNS who had discontinued GC therapy for more than 3 months and revisited the Department of Pediatrics of the First Affiliated Hospital of Henan University of Traditional Chinese Medicine between June 2022 and December 2022. After monitoring qualitative and quantitative urine protein levels upon admission, the children with proteinuria relapse were treated with GC (GC group; n=29), while those without relapse did not receive GC treatment (non-GC group; n=27). In addition, 29 healthy children aged 3 to prepuberty were selected as the control group. Height, bone age, growth rate, and the FGF23/Klotho ratio were compared among the groups. The correlations of the FGF23/Klotho ratio with height, bone age, and growth rate were analyzed. RESULTS: The FGF23/Klotho ratio in the GC group was significantly higher than that in the non-GC group after 1 month of GC therapy (P<0.05), and the height and bone age growth rates within 6 months were lower than those in the non-GC group (P<0.05). Correlation analysis showed significant negative correlations between the FGF23/Klotho ratio after 1 month of treatment and the growth rates of height and bone age within 6 months in children with PNS (r=-0.356 and -0.436, respectively; P<0.05). CONCLUSIONS: The disturbance in FGF23/Klotho homeostasis is one of the mechanisms underlying the growth impairment caused by long-term oral GC therapy.


Subject(s)
Fibroblast Growth Factor-23 , Glucocorticoids , Glucuronidase , Growth Disorders , Klotho Proteins , Child , Humans , Fibroblast Growth Factors/chemistry , Fibroblast Growth Factors/drug effects , Glucocorticoids/adverse effects , Prospective Studies , Recurrence , Klotho Proteins/chemistry , Klotho Proteins/drug effects , Fibroblast Growth Factor-23/chemistry , Fibroblast Growth Factor-23/drug effects , Growth Disorders/chemically induced
4.
Bioorg Chem ; 146: 107330, 2024 May.
Article in English | MEDLINE | ID: mdl-38579615

ABSTRACT

The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 µM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.


Subject(s)
Enzyme Inhibitors , Phosphoglycerate Dehydrogenase , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Serine , Glucose , Cell Line, Tumor
5.
Article in English | MEDLINE | ID: mdl-38642887

ABSTRACT

STUDY OBJECTIVE: To explore the effectiveness of transvaginal natural orifice transluminal endoscopic surgery extraperitoneal sacral hysteropexy (vNOTES-ESH) in women with symptomatic uterine prolapse over a 2 year follow-up. DESIGN: Retrospective cohort study. SETTING: Gynecological minimally invasive center. PATIENTS: Women undergoing sacral hysteropexy either by vNOTES (n = 25) or laparoscopic (n = 74) between November 2016 and December 2020. INTERVENTIONS: Both vNOTES-ESH and laparoscopic sacral hysteropexy (LAP-SH) were used for uterine prolapse. Demographic data, operative characteristics, perioperative outcomes, and follow-up information 2 years postsurgery in the 2 groups were retrospectively evaluated. RESULTS: Both procedures showed similar operation time, estimated blood loss, hospital stays, and pain scores (p >0.05). During a median follow-up of 59 (24-72) months, the surgical success rate was 96% for vNOTES-ESH and 97.3% for LAP-SH (p >0.05), with no differences in anatomical position or pelvic organ function after the operation. Women in the LAP-SH group experienced more bothersome symptoms of constipation compared to those in the vNOTES-ESH group (5.41% vs 0, p <0.05). Lastly, 1 case in the vNOTES-ESH group had a mesh exposed area of less than 1 cm2, and 1 patient in the LAP-SH group experienced stress incontinence. CONCLUSIONS: In this retrospective study, vNOTES-ESH met our patients' preference for uterine preservation and was a successful and effective treatment for uterine prolapse, providing good functional improvement in our follow-up. This procedure should be considered as an option for patients with pelvic organ prolapse.

6.
J Biol Chem ; 300(5): 107297, 2024 May.
Article in English | MEDLINE | ID: mdl-38641065

ABSTRACT

A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERß can affect the VM formation in RCC, it is unclear which factor could upregulate ERß. This is the first study to show LncRNA-SERB can be the upstream regulator of ERß to control RCC progression. Mechanistically, LncRNA-SERB may increase ERß via binding to the promoter area, and ERß functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERß/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.


Subject(s)
Carcinoma, Renal Cell , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , Neovascularization, Pathologic , RNA, Long Noncoding , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Animals , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , Cell Line, Tumor , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Neoplasm Metastasis , Mice, Nude , Male , Female , Neoplasm Invasiveness
7.
Int J Surg ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38537077

ABSTRACT

BACKGROUND: Total laparoscopic hysterectomy (TLH) is the most commonly performed gynecological surgery. However, the difficulty of the operation varies depending on the patient and surgeon. Subsequently, patient's outcomes and surgical efficiency are affected. We aimed to develop and validate a pre-operative nomogram to predict the operative difficulty in patients undergoing TLH. METHODS: This retrospective study included 663 patients with TLH from XXX Hospital and 102 patients from YYY Hospital in Chongqing, China. A multivariate logistic regression analysis was used to identify the independent predictors of operative difficulty, and a nomogram was constructed. The performance of the nomogram was validated internally and externally. RESULTS: The uterine weight, history of pelvic surgery, presence of adenomyosis, surgeon's years of practice, and annual hysterectomy volume were identified as significant independent predictors of operative difficulty. The nomogram demonstrated good discrimination in the training dataset (area under the receiver operating characteristic curve [AUC], 0.827 (95% confidence interval [CI], 0.783-0.872), internal validation dataset (AUC, 0.793 [95% CI, 0.714-0.872]), and external validation dataset (AUC, 0.756 [95% CI, 0.658-0.854]). The calibration curves showed good agreement between the predictions and observations for both internal and external validations. CONCLUSION: The developed nomogram accurately predicted the operative difficulty of TLH, facilitated pre-operative planning and patient counseling, and optimized surgical training. Further prospective multicenter clinical studies are required to optimize and validate this model.

8.
Cancer Res ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502865

ABSTRACT

The urea cycle is frequently rewired in cancer cells to meet the metabolic demands of cancer. Elucidation of the underlying mechanism by which oncogenic signaling mediates urea cycle reprogramming could help identify targetable metabolic vulnerabilities. In this study, we discovered that oncogenic activation of KRAS in non-small cell lung cancer (NSCLC) silenced the expression of argininosuccinate synthase 1 (ASS1), a urea cycle enzyme that catalyzes the production of arginine from aspartate and citrulline, and thereby diverted the utilization of aspartate to pyrimidine synthesis to meet the high demand for DNA replication. Specifically, KRAS signaling facilitated a hypo-acetylated state in the promoter region of the ASS1 gene in a histone deacetylase 3 (HDAC3)-dependent manner, which in turn impeded the recruitment of c-MYC for ASS1 transcription. ASS1 suppression in KRAS-mutant NSCLC cells impaired the biosynthesis of arginine and rendered a dependency on the arginine transmembrane transporter SLC7A1 to import extracellular arginine. Depletion of SLC7A1 in both patient-derived organoid and xenograft models inhibited KRAS-driven NSCLC growth. Together, these findings uncover the role of oncogenic KRAS in rewiring urea cycle metabolism and identify SLC7A1-mediated arginine uptake as a therapeutic vulnerability for treating KRAS-mutant NSCLC.

9.
Chin Clin Oncol ; 13(1): 4, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38453655

ABSTRACT

BACKGROUND: Artificial neural networks (ANNs) have been extensively used in the field of medicine. The present hypothesis-free study sought to use an ANN to identify the characteristic genes of cervical cancer (CC). METHODS: RNA sequencing profiles were obtained from the GSE7410, GSE9750, GSE63514, and GSE52903 datasets. The differentially expressed genes (DEGs) were identified and compared between the normal and CC tissues. An ANN analysis was conducted to obtain the random-forest tree and to examine differences in gene filtering. A neural network model was established using the characteristic genes of CC, while the verification accuracy of the model was examined by Cox regression. The differences in the immune infiltrating cells between the normal cervical and CC tissues were compared by CIBERSORT (an analytical tool can provide an estimation of the abundances of member cell types in a mixed cell population). RESULTS: Nine genes' characteristics for CC were identified: cyclin-dependent kinase inhibitor 2A (CDKN2A), chromosome 1 open reading frame 112 (C1orf112), helicase, lymphoid-specific (HELLS), mini-chromosome maintenance protein 5 (MCM5), mini-chromosome maintenance protein 2 (MCM2), kinetochore associated 1 (KNTC1), cysteine-rich secretory protein 3 (CRISP3), phytanoyl-CoA 2-hydroxylase interacting protein (PHYHIP), and cornulin (CRNN). CONCLUSIONS: ANN is a robust neural network model that can be used to potentially predict CC based on the gene score. It can provide novel insights into the pathogenesis and molecular mechanisms of CC.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Computational Biology , Neural Networks, Computer
10.
Public Health Nutr ; 27(1): e71, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305112

ABSTRACT

OBJECTIVE: To determine the appropriateness of three widely used formulas estimating 24-h urinary Na (24hUNa) from spot urine samples in the Chinese population. DESIGN: Systematic review and meta-analysis. SETTING: Literature review was conducted to identify studies for estimating 24hUNa using the Kawasaki, Tanaka and INTERSALT formulas simultaneously in PubMed, Embase and the Cochrane library databases. The mean difference (MD) and correlation coefficients (r) between measures and estimates from different formulas were assessed. PARTICIPANTS: Information extraction and quality assessment were performed in thirteen studies involving 8369 subjects. RESULTS: Two studies which affected the overall robustness were excluded in the 'leave-one-out' sensitivity analyses. Within the final meta-analysis included eleven studies and 7197 participants, 36·07 mmol/d (95 %CI 16·89, 55·25) of MD was observed in the Kawasaki formula, and -19·62 mmol/d (95 %CI -37·37, -1·87) in the Tanaka formula and -35·78 mmol/d (95 %CI -50·76, -20·80) in the INTERSALT formula; a pooled r-Fisher's Z of 0·39 (95 %CI 0·32, 0·45) in the Kawasaki formula, 0·43 (95 %CI 0·37, 0·49) in the Tanaka formula and 0·36 (95 %CI 0·31, 0·42) in the INTERSALT formula. Subgroup analyses were conducted to explore the possible factors affecting the accuracy of the formula estimation from three mainly aspects: population types, Na intake levels and urine specimen types. CONCLUSIONS: The meta-analysis suggested that the Tanaka formula performed a more accurate estimate in Chinese population. Time of collecting spot urine specimens and Na intake level of the sample population might be the main factors affecting the accuracy of the formula estimation.


Subject(s)
Sodium, Dietary , Urinalysis , Humans , China , Sodium/urine , Sodium, Dietary/urine
11.
J Am Chem Soc ; 146(6): 3854-3860, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305733

ABSTRACT

The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.

12.
J Cell Mol Med ; 28(4): e18143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38333908

ABSTRACT

Nerve growth factor (NGF) and its receptor, tropomyosin receptor kinase A (TrkA), are known to play important roles in the immune and nervous system. However, the effects of NGF on the osteogenic differentiation of dental pulp stem cells (DPSCs) remain unclear. This study aimed to investigate the role of NGF on the osteogenic differentiation of DPSCs in vitro and the underlying mechanisms. DPSCs were cultured in osteogenic differentiation medium containing NGF (50 ng/mL) for 7 days. Then osteogenic-related genes and protein markers were analysed using qRT-PCR and Western blot, respectively. Furthermore, addition of NGF inhibitor and small interfering RNA (siRNA) transfection experiments were used to elucidate the molecular signalling pathway responsible for the process. NGF increased osteogenic differentiation of DPSCs significantly compared with DPSCs cultured in an osteogenic-inducing medium. The NGF inhibitor Ro 08-2750 (10 µM) and siRNA-mediated gene silencing of NGF receptor, TrkA and ERK signalling pathways inhibitor U0126 (10 µM) suppressed osteogenic-related genes and protein markers on DPSCs. Furthermore, our data revealed that NGF-upregulated osteogenic differentiation of DPSCs may be associated with the activation of MEK/ERK signalling pathways via TrkA. Collectively, NGF was capable of promoting osteogenic differentiation of DPSCs through MEK/ERK signalling pathways, which may enhance the DPSCs-mediated bone tissue regeneration.


Subject(s)
Nerve Growth Factor , Osteogenesis , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Dental Pulp , Stem Cells/metabolism , Cell Differentiation , Cells, Cultured , RNA, Small Interfering/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Proliferation
13.
Adv Sci (Weinh) ; 11(11): e2304781, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38189627

ABSTRACT

Intervention of the gut microbiome is a promising adjuvant strategy in cancer immunotherapy. Chemotherapeutic agents are recognized for their substantial impacts on the gut microbiome, yet their therapeutic potential as microbiome modulators remains uncertain, due to the complexity of microbiome-host-drug interactions. Here, it is showed that low-dose chemotherapy preferentially shapes the ileal microbiome to augment the extraintestinal immune response to anti-programmed death-1 (anti-PD-1) therapy without causing intestinal toxicity. Mechanistically, low-dose chemotherapy causes DNA damage restricted to highly-proliferative ileal epithelial cells, resulting in the accumulation of cytosolic dsDNA and the activation of the absent in melanoma 2 (AIM2) inflammasome. AIM2-dependent IL-18 secretion triggers the interplay between proximal Th1 cells and Paneth cells in ileal crypts, impairing the local antimicrobial host defense and resulting in ileal microbiome change. Intestinal epithelium-specific knockout of AIM2 in mice significantly attenuates CPT-11-caused IL-18 secretion, Paneth cell dysfunction, and ileal microbiome alteration. Moreover, AIM2 deficiency in mice or antibiotic microbial depletion attenuates chemotherapy-augmented antitumor responses to anti-PD1 therapy. Collectively, these findings provide mechanistic insights into how chemotherapy-induced genomic stress is transduced to gut microbiome change and support the rationale of applying low-dose chemotherapy as a promising adjuvant strategy in cancer immunotherapy with minimal toxicity.


Subject(s)
Melanoma , Microbiota , Animals , Mice , Inflammasomes , Interleukin-18/genetics , Immune Checkpoint Inhibitors/pharmacology , DNA-Binding Proteins/genetics , Epithelial Cells
15.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256163

ABSTRACT

Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda.


Subject(s)
Palaemonidae , Vitellogenins , Animals , Female , Vitellogenins/genetics , Palaemonidae/genetics , Phylogeny , Embryonic Development , Evolution, Molecular
16.
Appl Opt ; 63(3): 604-610, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294370

ABSTRACT

In this work, a spatiotemporal metasurface is proposed to manipulate the path of photons flexibly. The spatial modulation is induced by the rectangle silicon units aligned on silica in a manner with a phase gradient only for y-polarized photons, and the temporal modulation is contributed by the pumps of constructing Kerr dynamic gratings. By quantizing designed metasurfaces, the analytical solutions of output photon states can be derived correspondingly. Reversal design could be implemented by tailoring the profile of higher harmonics to infer the intensity of pumps, size of meta-atoms, and initial state. The path-polarization entanglement and correlations of output photons are realized, and then a CNOT gate is obtained by utilizing the deflection of the photon path. This work provides a scheme to deal with the spatiotemporal metasurfaces and expands the applications of metasurfaces in the quantum realm.

17.
J Hazard Mater ; 465: 133153, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056268

ABSTRACT

Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.


Subject(s)
Chromium , Soil , Soil/chemistry , Chromium/analysis , Iron , Fungal Proteins/chemistry , Glycoproteins/chemistry , Carbon , Adsorption
18.
Ir J Med Sci ; 193(2): 699-703, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37725319

ABSTRACT

BACKGROUND: Small intestinal bacterial overgrowth (SIBO) is still difficult to diagnose. Quantitative culture of small intestine aspirate is recommended to be the gold standard. The methane and hydrogen breath tests are easily repeatable, sufficiently sensitive and highly specific for SIBO diagnosis. Our goal is to contrast the diagnostic value of the breath tests with jejunal aspiration cultures. METHODS: 40 adult outpatients (age < 60) were enrolled in our study. Randomly, within 2 days, both the methane and the hydrogen breath test and jejunal aspiration culture were performed on each patient and the results of both tests were evaluated and contrasted. RESULTS: The jejunal culture was positive (105CFU / mL) in 14/40(35%) subjects, the lactulose breath test (LBT) was positive in 18/40 (45%) subjects, and the glucose breath test (GBT) was positive in 12/40 (30%). The GBT showed good agreement (κ = 0.659) and LBT showed poor agreement (κ = 0.588) with the jejunal aspirate culture. The sensitivity, specificity, positive and negative predictive values of LBT/GBT were 85.7/71.4%,76.9/92.3%, 66.6/83.3% and 90.9/85.7%, respectively. CONCLUSIONS: 35% of patients with suspected SIBO are identified using jejunal aspirate cultures. For the identification of SIBO, GBT is more specific than LBT, but has a lower sensitivity. In individuals with suspected SIBO, the breath test should be initially due to its good agreement with the jejunal aspirate culture.


Subject(s)
Bacterial Infections , Methane , Adult , Humans , Bacterial Infections/diagnosis , Breath Tests/methods , Glucose , Hydrogen , Intestine, Small/microbiology , Lactulose , Middle Aged
19.
Heliyon ; 9(12): e22116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076161

ABSTRACT

Many metabolic diseases have been demonstrated to be associated with changes in the microbiome. However, no studies have yet been conducted to examine the characteristics of the mucosal microbiota of patients with hypercholesterolemia. We aimed to examine mucosa-associated microbiota in subjects with hypercholesterolemia. We conducted a case-control study, in which ileal mucosal samples were collected from 13 hypercholesterolemia patients and 13 controls for 16S rRNA gene sequencing. There were differences in the composition of ileal mucosal microbiota based on beta diversity between the hypercholesterolemia and control groups (P < 0.05). Compared with the control group, the phylum Bacteroidetes and the genera Bacteroides, Butyricicoccus, Parasutterella, Candidatus_Soleaferrea, and norank_f__norank_o__Izemoplasmatales were less abundant in the hypercholesterolemia group (P < 0.05), while the genus Anaerovibrio was enriched in the hypercholesterolemia group (P < 0.05). The relative abundance of Bacteroides was negatively correlated with total cholesterol and low-density lipoprotein cholesterol (P < 0.01). The relative abundance of Coprococcus was negatively correlated with triglycerides and body mass index (all P < 0.05). PICRUSt functional prediction analysis showed that pathways related to Glycerophospholipid metabolism, ABC transporters, Phosphotransferase system, and Biofilm formation - Escherichia coli, and infectious diseases of pathogenic Escherichia coli were enriched in the hypercholesterolemia group. This work suggests a potential role of ileal mucosal microbiota in the development of hypercholesterolemia.

20.
J Pain Res ; 16: 4317-4328, 2023.
Article in English | MEDLINE | ID: mdl-38145035

ABSTRACT

Introduction: While numerous studies have emphasized the pivotal involvement of the Interleukin 6 (IL-6) pathway in the development of chronic pain, the causal nature of this relationship remains uncertain. Methods: In this study, we opted to include genetic variants situated within the locus of the IL-6 receptor (IL-6R) that exhibited associations with C-reactive protein (CRP) levels. CRP serves as a downstream effector in the IL-6 pathway. Utilizing these variants as genetic proxies, we aimed to modulate IL-6 signaling. Employing a two-sample Mendelian randomization (MR) approach, we investigated the potential link between the genetic proxy and seven distinct subtypes of chronic pain, categorized based on their corresponding body locations. Moreover, we examined the relationship between chronic pain and an alternative instrument of IL-6 signaling that was weighted based on s-IL-6R levels. Furthermore, we conducted exploratory analyses to estimate the plausible causal association between CRP, gp130, and the subtypes of chronic pain. Results: Our analysis showed that genetic proxied downregulation of IL-6 signaling, weighted on CRP levels, was linked to a reduced risk of chronic back and knee pain. The sensitivity analyses across various MR methods confirmed the consistency of the findings and showed no evidence of horizontal pleiotropy or heterogeneity. Moreover, the results remained robust with different sets of instrument variables. A genetically increased level of s-IL-6R was also negatively associated with chronic back and knee pain. However, there was no causal relationship between CRP and gp130 with chronic pain. Conclusion: Based on our findings, there is evidence to suggest a potential causal relationship between IL-6 signaling and chronic back and knee pain. Consequently, the downregulation of IL-6 signaling holds promise as a potential therapeutic target for addressing chronic back and knee pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...