Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(31)2024 May 17.
Article in English | MEDLINE | ID: mdl-38688256

ABSTRACT

Herein a series of size-selected TaN(N = 147, 309, 561, 923, 1415, 2057, 6525, 10 000, 20 000) clusters are generated using a gas-phase condensation cluster beam source equipped with a lateral time-of-flight mass-selector. Aberration-corrected scanning transmission electron microscopy (AC-STEM) imaging reveals good thermal stability of TaNclusters in this study. The oxidation-induced amorphization is observed from AC-STEM imaging and further demonstrated through x-ray photoelectron spectroscopy and energy-dispersive spectroscopy. The oxidized Ta predominantly exists in the +5 oxidation state and the maximum spontaneous oxidation depth of the Ta cluster is observed to be 5 nm under prolonged atmosphere exposure. Furthermore, the size-dependent sintering and crystallization processes of oxidized TaNclusters are observed with anin situheating technique, and eventually, ordered structures are restored. As the temperature reaches 1300 °C, a fraction of oxidized Ta309clusters exhibit decahedral and icosahedral structures. However, the five-fold symmetry structures are absent in larger clusters, instead, these clusters exhibit ordered structures resembling those of the crystalline Ta2O5films. Notably, the sintering and crystallization process occurs at temperatures significantly lower than the melting point of Ta and Ta2O5, and the ordered structures resulting from annealing remain well-preserved after six months of exposure to ambient conditions.

2.
Nanoscale ; 15(36): 15043-15049, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37671432

ABSTRACT

In this study, we successfully synthesized rod-shaped [Au25(PPh3)10(S-Adm)5Cl2]2+ nanoclusters using kinetic controls. The complete molecular structure was determined by single-crystal X-ray crystallography and electrospray ionization mass spectrometry. In comparison with the previously reported [Au25(PPh3)10(PET)5Cl2]2+ clusters, both nanoclusters have an icosahedral composition of Au13 linked by Au atoms that share a vertex, but [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters appear elongated due to the rigidity of adamantane. We conducted ultraviolet-visible spectrophotometry (UV-vis) measurements of [Au25(PPh3)10(PET)5Cl2]2+ and [Au25(PPh3)10(S-Adm)5Cl2]2+ in dichloromethane solvent to elucidate the modulation of the cluster properties of different ligands. The lowest energy absorption peak of [Au25(PPh3)10(S-Adm)5Cl2]2+ shifted to lower energies compared to the [Au25(PPh3)10(PET)5Cl2]2+ clusters in UV-vis measurements. Temperature-dependent absorption measurements revealed that [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters were less affected by temperature compared to [Au25(PPh3)10(PET)5Cl2]2+. This result is attributed to the exciton phonon coupling of [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters being weaker than [Au25(PPh3)10(PET)5Cl2]2+ clusters. Furthermore, the absorption spectra of [Au25(PPh3)10(PET)5Cl2]2+ and [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters were measured using different types of solutions, and it was found that the lowest energy absorption peaks of [Au25(PPh3)10(S-Adm)5Cl2]2+ were shifted and affected by the solution at room temperature, which suggested that the [Au25(PPh3)10(S-Adm)5Cl2]2+ clusters with solution hydrogen bonds also interacted strongly at room temperature. Theoretical calculations show that changes in ligands affect the differences in the molecular orbitals and structures of the clusters, which cause changes in the optical properties.

3.
J Environ Qual ; 48(3): 568-578, 2019 May.
Article in English | MEDLINE | ID: mdl-31180433

ABSTRACT

The risk of P leaching from topsoil based on the change-point estimated via a split-line model between Olsen P and leachable P extracted by 0.01 M CaCl has been reported. However, little information is available for the assessment of P leaching from soil profiles. In this study, samples were collected at three depth profiles (0-20 cm, topsoil; 20-40 cm, subsoil; 40-60 cm, third-layer soil) at each of 74 sites under agriculture and forest in an agroforestry area. A cascade extraction method was proposed to determine the leachable P in the subsoil, extracted by the topsoil extraction solution; a similar extracted process was followed in the third-layer soil, and in the topsoil, it was still extracted by 0.01 M CaCl. A positive linear correlation was found between the subsoil leachable P extracted by the topsoil extraction solution and the accumulated P obtained from the subsoil leached by topsoil leachates, and so on. Therefore, the cascade extraction method for determining leachable P from topsoils and underlying soils could be valuable for predicting the potential of P leaching from soil profiles. Approximately 81, 73, and 73% of the agricultural sampling sites were at or above the change-points for the soil depths of 0 to 20, 20 to 40, and 40 to 60 cm (30.4, 32.9, and 18.2 mg kg respectively); these values were higher than those for the forest site, implying a high risk of P leaching from agricultural soil profiles in the study area.


Subject(s)
Soil Pollutants , Soil , Agriculture , Forests , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL
...