Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 504
Filter
1.
Chemosphere ; 363: 142845, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004144

ABSTRACT

Nitroaromatic compounds (NACs) in ambient particles are of great concern due to their adverse effects on human health and climate. However, investigations on the characteristics and potential sources of NACs in Southwest China are still scarce. In this study, a field sampling campaign was carried out in the winter of 2022 at a suburban site in Mianyang, Southwest China. A direct injection liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to rapidly determine 10 NACs in fine particulate matter (PM2.5) extracts. The method was sensitive for the quantification of the NACs, with a limit of quantification (LOQ) in the range of 0.092-0.52 ng mL-1. Then, the developed method was applied to determine the concentrations of nitrophenols (NPs), nitrocatechols (NCs), nitrosalicylic acids (NSAs), and nitronaphthol in PM2.5 in Mianyang. The average concentration of total NACs was 78.2 ± 31.2 ng m-3, with daily concentrations ranging from 20.7 to 127.9 ng m-3. Among the measured NACs, 4-nitrocatechol was the most abundant, accounting for 57.8% of the NACs in winter. The five NPs compounds together contributed to 14% of the NACs, which was lower than in other Chinese cities due to the warm climate in winter in Southwest China. NSAs and nitronaphthol each accounted for less than 5% of the NACs. Three major sources of NACs were identified based on the principal component analysis, including vehicle emissions, biomass burning, and secondary formation. The significant correlation between individual NACs and NO2 supported their secondary formation sources. The good correlation between NPs and cloud amount further suggested that gas-phase oxidation was the possible NPs formation mechanism. Our findings revealed the important role of nitrocatechols in NACs in Southwest China, implying that more measures should be taken to control biomass burning and aromatic volatile organic compounds emissions to reduce the level of NACs.

2.
Biotechnol Bioeng ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014884

ABSTRACT

Listeria monocytogenes (LM) is a Gram-positive (G+) bacterium that secretes nanoscale membrane vesicles (MVs). LM MVs comprise various bacterial components and may have potential as an antigen or drug-delivery vehicle; however, the low yield of the LM MVs limits related research. G+-bacterial MVs germinate from the bacterial plasma membrane and must pass through a thick crosslinked peptidoglycan layer for release. Herein, we aimed to increase the release of MVs by reducing the degree of crosslinking of peptidoglycan. We knocked out two genes related to the longitudinal crosslinking of peptidoglycan, dal and dat, and supplemented the knocked-out dal gene through plasmid expression to obtain a stably inherited recombinant strain LMΔdd::pCW633. The structure, particle size, and main protein components of MVs secreted by this recombinant strain were consistent with those secreted from the wild strain, but the yield of MVs was considerably increased (p < 0.05). Furthermore, Listeria ivanovii (LI) was found to secrete MVs that differed in the composition of the main proteins compared with those of LM MVs. The abovementioned method was also feasible for promoting the secretion of MVs from the attenuated LM strain and LI wild-type and attenuated strains. Our study provides a new method to increase the secretion of MVs derived from Listeria that could be extended to other G+ bacteria.

4.
BMC Pediatr ; 24(1): 424, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956494

ABSTRACT

OBJECTIVES: Although recent discoveries regarding the biomarkers of newborn screening (NBS) programs by tandem mass spectrometry (MS/MS) highlight the critical need to establish reference intervals (RIs) specifically for preterm infants, no such RIs has been formally published yet. This study addressed the gap by offering a comprehensive set of reference intervals (RIs) for preterm neonates, and illustrating the dynamic changes of each biomarker with age. DESIGN AND METHODS: The NBS data of 199,693 preterm newborns (< 37 weeks of gestation) who met the inclusion and exclusion criteria from the NNSCP database were included in study analysis. The birth weight stratified dynamic trend of each biomarker were captured by their concentrations over age. Reference partitions were determined by the method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 0.5th, 25th, 50th, 75th and 99.5th percentiles were calculated using a non-parametric rank approach. RESULTS: Increasing birth weight is associated with an elevation in the levels of arginine, citrulline, glycine, leucine and isobarics, methionine, ornithine, phenylalanine, and valine, whereas the levels of alanine, proline and tyrosine decrease. Additionally, two short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and isovalerylcarnitine + methylbutyrylcarnitine) and a median-chain acylcarnitine (octenoylcarnitine) decrease, while four long-chain acylcarnitines (tetradecanoylcarnitine, palmitoylcarnitine, palmitoleylcarnitine and oleoylcarnitine) increase with increasing birth weight. Age impacts the levels of all MS/MS NBS biomarkers, while sex only affects the level of malonylcarnitine + 3-hydroxybutyrylcarnitine (C3-DC + C4-OH) in very low birth weight preterm neonates. CONCLUSION: The current study developed reference intervals (RIs) specific to birth weight, age, and/or sex for 35 MS/MS biomarkers, which can help in the timely evaluation of the health and disease of preterm neonates.


Subject(s)
Biomarkers , Dried Blood Spot Testing , Infant, Premature , Neonatal Screening , Tandem Mass Spectrometry , Humans , Infant, Newborn , Neonatal Screening/methods , Reference Values , Male , Female , Biomarkers/blood , Infant, Premature/blood , Retrospective Studies , Dried Blood Spot Testing/methods , China , Carnitine/blood , Carnitine/analogs & derivatives , Birth Weight , East Asian People
5.
Lancet Planet Health ; 8(7): e463-e475, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969474

ABSTRACT

BACKGROUND: Nipah virus is a zoonotic paramyxovirus responsible for disease outbreaks with high fatality rates in south and southeast Asia. However, knowledge of the potential geographical extent and risk patterns of the virus is poor. We aimed to establish an integrated spatiotemporal and phylogenetic database of Nipah virus infections in humans and animals across south and southeast Asia. METHODS: In this geospatial modelling analysis, we developed an integrated database containing information on the distribution of Nipah virus infections in humans and animals from 1998 to 2021. We conducted phylodynamic analysis to examine the evolution and migration pathways of the virus and meta-analyses to estimate the adjusted case-fatality rate. We used two boosted regression tree models to identify the potential ecological drivers of Nipah virus occurrences in spillover events and endemic areas, and mapped potential risk areas for Nipah virus endemicity. FINDINGS: 749 people and eight bat species across nine countries were documented as being infected with Nipah virus. On the basis of 66 complete genomes of the virus, we identified two clades-the Bangladesh clade and the Malaysia clade-with the time of the most recent common ancestor estimated to be 1863. Adjusted case-fatality rates varied widely between countries and were higher for the Bangladesh clade than for the Malaysia clade. Multivariable meta-regression analysis revealed significant relationships between case-fatality rate estimates and viral clade (p=0·0021), source country (p=0·016), proportion of male patients (p=0·036), and travel time to health-care facilities (p=0·036). Temperature-related bioclimate variables and the probability of occurrence of Pteropus medius were important contributors to both the spillover and the endemic infection models. INTERPRETATION: The suitable niches for Nipah virus are more extensive than previously reported. Future surveillance efforts should focus on high-risk areas informed by updated projections. Specifically, intensifying zoonotic surveillance efforts, enhancing laboratory testing capacity, and implementing public health education in projected high-risk areas where no human cases have been reported to date will be crucial. Additionally, strengthening wildlife surveillance and investigating potential modes of transmission in regions with documented human cases is needed. FUNDING: The Key Research and Development Program of China.


Subject(s)
Henipavirus Infections , Nipah Virus , Nipah Virus/physiology , Henipavirus Infections/epidemiology , Henipavirus Infections/transmission , Humans , Animals , Chiroptera/virology , Asia, Southeastern/epidemiology , Phylogeny , Zoonoses/epidemiology , Zoonoses/virology
6.
J Safety Res ; 89: 116-134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858034

ABSTRACT

INTRODUCTION: Motor vehicle collisions are a leading source of mortality and injury on urban highways. From a temporal perspective, the determination of a road segment as being collision-prone over time can fluctuate dramatically, making it difficult for transportation agencies to propose traffic interventions. However, there has been limited research to identify and characterize collision-prone road segments with varying collision density patterns over time. METHOD: This study proposes an identification and characterization framework that profiles collision-prone roads with various collision density variations. We first employ the spatio-temporal network kernel density estimation (STNKDE) method and time-series clustering to identify road segments with different collision density patterns. Next, we characterize collision-prone road segments based on spatio-temporal information, consequences, vehicle types, and contributing factors to collisions. The proposed method is applied to two-year motor vehicle collision records for New York City. RESULTS: Seven clusters of road segments with different collision density patterns were identified. Road segments frequently determined as collision-prone were primarily found in Lower Manhattan and the center of the Bronx borough. Furthermore, collisions near road segments that exhibit greater collision densities over time result in more fatalities and injuries, many of which are caused by both human and vehicle factors. CONCLUSIONS: Collision-prone road segments with various collision density patterns over time have distinct differences in the spatio-temporal domain and the collisions that occur on them. PRACTICAL APPLICATIONS: The proposed method can help policymakers understand how collision-prone road segments change over time, and can serve as a reference for more targeted traffic treatment.


Subject(s)
Accidents, Traffic , Motor Vehicles , Accidents, Traffic/statistics & numerical data , Humans , New York City/epidemiology , Motor Vehicles/statistics & numerical data , Spatio-Temporal Analysis , Cluster Analysis , Environment Design
7.
Article in English | MEDLINE | ID: mdl-38837920

ABSTRACT

Benefiting from the high-temporal resolution of electroencephalogram (EEG), EEG-based emotion recognition has become one of the hotspots of affective computing. For EEG-based emotion recognition systems, it is crucial to utilize state-of-the-art learning strategies to automatically learn emotion-related brain cognitive patterns from emotional EEG signals, and the learned stable cognitive patterns effectively ensure the robustness of the emotion recognition system. In this work, to realize the efficient decoding of emotional EEG, we propose a graph learning system Graph Convolutional Network framework with Brain network initial inspiration and Fused attention mechanism (BF-GCN) inspired by the brain cognitive mechanism to automatically learn graph patterns from emotional EEG and improve the performance of EEG emotion recognition. In the proposed BF-GCN, three graph branches, i.e., cognition-inspired functional graph branch, data-driven graph branch, and fused common graph branch, are first elaborately designed to automatically learn emotional cognitive graph patterns from emotional EEG signals. And then, the attention mechanism is adopted to further capture the brain activation graph patterns that are related to emotion cognition to achieve an efficient representation of emotional EEG signals. Essentially, the proposed BF-CGN model is a cognition-inspired graph learning neural network model, which utilizes the spectral graph filtering theory in the automatic learning and extracting of emotional EEG graph patterns. To evaluate the performance of the BF-GCN graph learning system, we conducted subject-dependent and subject-independent experiments on two public datasets, i.e., SEED and SEED-IV. The proposed BF-GCN graph learning system has achieved 97.44% (SEED) and 89.55% (SEED-IV) in subject-dependent experiments, and the results in subject-independent experiments have achieved 92.72% (SEED) and 82.03% (SEED-IV), respectively. The state-of-the-art performance indicates that the proposed BF-GCN graph learning system has a robust performance in EEG-based emotion recognition, which provides a promising direction for affective computing.

8.
Cells ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38920649

ABSTRACT

Mycobacterium tuberculosis causes 6.4 million cases of tuberculosis and claims 1.6 million lives annually. Mycobacterial adhesion, invasion of host cells, and subsequent intracellular survival are crucial for the infection and dissemination process, yet the cellular mechanisms underlying these phenomena remain poorly understood. This study created a Bacillus Calmette-Guérin (BCG) transposon library using a MycomarT7 phage carrying a Himar1 Mariner transposon to identify genes related to mycobacteria adhesion and invasion. Using adhesion and invasion model screening, we found that the mutant strain B2909 lacked adhesion and invasion abilities because of an inactive fadD18 gene, which encodes a fatty-acyl CoA ligase, although the specific function of this gene remains unclear. To investigate the role of FadD18, we constructed a complementary strain and observed that fadD18 expression enhanced the colony size and promoted the formation of a stronger cord-like structure; FadD18 expression also inhibited BCG growth and reduced BCG intracellular survival in macrophages. Furthermore, FadD18 expression elevated levels of the proinflammatory cytokines IL-6, IL-1ß, and TNF-α in infected macrophages by stimulating the NF-κB and MAPK signaling pathways. Overall, the FadD18 plays a key role in the adhesion and invasion abilities of mycobacteria while modulating the intracellular survival of BCG by influencing the production of proinflammatory cytokines.


Subject(s)
Cytokines , Mycobacterium tuberculosis , Cytokines/metabolism , Macrophages/microbiology , Macrophages/metabolism , Mycobacterium bovis , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Humans , NF-kappa B/metabolism , Microbial Viability , Bacterial Adhesion
9.
Biomacromolecules ; 25(7): 4510-4522, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38877976

ABSTRACT

Stimuli-responsive adhesives with on-demand adhesion capabilities are highly advantageous for facilitating wound healing. However, the triggering conditions of stimuli-responsive adhesives are cumbersome, even though some of them are detrimental to the adhesive and adjacent natural tissues. Herein, a novel stimuli-responsive adhesive called shear-stiffening adhesive (SSA) has been created by constructing a poly(diborosiloxane)-based silicone network for the first time, and SSA exhibits a rate-responsive adhesion behavior. Furthermore, we introduced bactericidal factors (PVP-I) into SSA and applied it as a wound dressing to promote the healing of infected wounds. Impressively, the wound dressing not only has excellent biocompatibility and long-term antibacterial properties but also performs well in accelerating wound healing. Therefore, this study provides a new strategy for the synthesis of intelligent adhesives with force rate response, which simplifies the triggering conditions by the force rate. Thus, SSA has great potential to be applied in wound management as an intelligent bioadhesive with on-demand adhesion performance.


Subject(s)
Bandages , Silicones , Wound Healing , Wound Healing/drug effects , Animals , Silicones/chemistry , Adhesives/chemistry , Adhesives/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Humans , Staphylococcus aureus/drug effects
10.
Cell Biol Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894536

ABSTRACT

Lung adenocarcinoma (LUAD) is the most common subtype of NSCLC, characterized by poor prognosis and frequently diagnosed at advanced. While previous studies have demonstrated pleckstrin-2 (PLEK2) as aberrantly expressed and implicated in tumorigenesis across various tumor types, including LUAD, the molecular mechanisms underlying PLEK2-mediated LUAD progression remain incompletely understood. In this study, we obtained data from The Cancer Genome Atlas (TCGA) database to assess PLEK2 expression in LUAD, a finding further confirmed through analysis of human tissue specimens. PLEK2-silenced LUAD cellular models were subsequently constructed to examine the functional role of PLEK2 both in vitro and in vivo. Our results showed elevated PLEK2 expression in LUAD, correlating with poor patients' prognosis. PLEK2 knockdown led to a significant suppression of LUAD cell proliferation and migration, accompanied by enhanced apoptosis. Moreover, tumor growth in mice injected with PLEK2-silencing LUAD cells was impaired. Gene expression profiling and Co-IP assays suggested direct interaction between PLEK2 and SPC25, with downregulation of SPC25 similarly impairing cell proliferation and migration. Additionally, we revealed phosphoinositide 3-kinase (PI3K)/AKT signaling activation as requisite for PLEK2-induced malignant phenotypes in LUAD. Collectively, our findings underscore PLEK2's oncogenic potential in LUAD, suggesting its utility as a prognostic indicator and therapeutic target for LUAD management.

11.
Front Neurosci ; 18: 1368552, 2024.
Article in English | MEDLINE | ID: mdl-38716255

ABSTRACT

Probucol has been utilized as a cholesterol-lowering drug with antioxidative properties. However, the impact and fundamental mechanisms of probucol in obesity-related cognitive decline are unclear. In this study, male C57BL/6J mice were allocated to a normal chow diet (NCD) group or a high-fat diet (HFD) group, followed by administration of probucol to half of the mice on the HFD regimen. Subsequently, the mice were subjected to a series of behavioral assessments, alongside the measurement of metabolic and redox parameters. Notably, probucol treatment effectively alleviates cognitive and social impairments induced by HFD in mice, while exhibiting no discernible influence on mood-related behaviors. Notably, the beneficial effects of probucol arise independently of rectifying obesity or restoring systemic glucose and lipid homeostasis, as evidenced by the lack of changes in body weight, serum cholesterol levels, blood glucose, hyperinsulinemia, systemic insulin resistance, and oxidative stress. Instead, probucol could regulate the levels of nitric oxide and superoxide-generating proteins, and it could specifically alleviate HFD-induced hippocampal insulin resistance. These findings shed light on the potential role of probucol in modulating obesity-related cognitive decline and urge reevaluation of the underlying mechanisms by which probucol exerts its beneficial effects.

12.
RSC Adv ; 14(21): 14964-14972, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38737648

ABSTRACT

Mn-based high voltage cathodes, e.g., spinel LiMn2O4, are considered among the most promising materials for cost-effective, next generation energy storage. When paired with a Li metal anode, secondary batteries based on Li||LiMn2O4 in principle offer a straightforward, scalable approach for achieving cost-effective and high energy density storage demanded in applications. In practice, however, such batteries fail to live up to their promise. Rapid capacity fading caused by irreversible Mn dissolution at the cathode coupled with mossy/dendritic Li deposition at the anode limit their useful life. In this study, we report on the design of electrolytes based on a binary blend of two widely available salts, LiNO3 and LiTFSI, in ethylene carbonate (EC), which simultaneously overcome failure modes at both the cathode and anode of Li||LiMn2O4 batteries. The electrolyte design is motivated by a recent finding that compared with their linear counterparts (e.g., dimethyl carbonate), cyclic carbonates like EC dissolve considerably larger amount of LiNO3, which markedly improves anode reversibility. On the other hand, it is known that nonsolvolytic fluorine-containing Li salts like LiTFSI, lowers the electrolyte's susceptibility to solvolysis, which generates HF species responsible for Mn leaching at the cathode. In particular, we report instead that fluorine groups in the TFSI salt, promote formation of a favorable, fluorine-rich interphase on the Li metal anode. Electrochemical measurements show that the electrolytes enable remarkably improved charge-discharge cycling stability (>1000 charge-discharge cycles) of Li||LiMn2O4 batteries. In-depth atomic-resolution electron microscopy and X-ray/synchrotron diffraction experiments reveal the fundamental source of the improvements. The measurements show that crystallographic degradation of Mn-based cathodes (e.g., surface Mn leaching and bulk defect generation) upon cycling in conventional electrolytes is dramatically lowered in the LiNO3 + LiTFSI/EC electrolyte system. It is shown further that the reduction of Mn dissolution not only improves the cathode stability but improves the reversibility of the Li metal anode via a unique re-deposition mechanism in which Li and Mn co-deposit on the anode. Taken together, our findings show that the LiNO3 + LiTFSI/EC electrolyte system holds promise for accelerating progress towards practical Li||LiMn2O4 batteries because it stabilizes the dynamic interfaces required for long-term stability at both the Li anode and the LiMn2O4 cathode.

13.
Front Plant Sci ; 15: 1385210, 2024.
Article in English | MEDLINE | ID: mdl-38721336

ABSTRACT

Understanding the genetic basis of local adaption is crucial in the context of global climate change. Mangroves, as salt-tolerant trees and shrubs in the intertidal zone of tropical and subtropical coastlines, are particularly vulnerable to climate change. Kandelia obovata, the most cold-tolerant mangrove species, has undergone ecological speciation from its cold-intolerant counterpart, Kandelia candel, with geographic separation by the South China Sea. In this study, we conducted whole-genome re-sequencing of K. obovata populations along China's southeast coast, to elucidate the genetic basis responsible for mangrove local adaptation to climate. Our analysis revealed a strong population structure among the three K. obovata populations, with complex demographic histories involving population expansion, bottleneck, and gene flow. Genome-wide scans unveiled pronounced patterns of selective sweeps in highly differentiated regions among pairwise populations, with stronger signatures observed in the northern populations compared to the southern population. Additionally, significant genotype-environment associations for temperature-related variables were identified, while no associations were detected for precipitation. A set of 39 high-confidence candidate genes underlying local adaptation of K. obovata were identified, which are distinct from genes under selection detected by comparison between K. obovata and its cold-intolerant relative K. candel. These results significantly contribute to our understanding of the genetic underpinnings of local adaptation in K. obovata and provide valuable insights into the evolutionary processes shaping the genetic diversity of mangrove populations in response to climate change.

14.
Article in English | MEDLINE | ID: mdl-38819179

ABSTRACT

Background: Oral health is crucial for overall well-being, and periodontal disease can lead to serious complications such as intraosseous defects. In recent years, local administration of 1% melatonin gel has been explored as a potential treatment option for intraosseous defects. However, its efficacy compared to traditional non-surgical periodontal therapy (NSPT) is not fully understood. Primary Study Objective: To evaluate and compare the efficacy of 1% melatonin gel local administration with non-surgical periodontal therapy (NSPT) in the treatment of stage I and stage IV periodontal bone defects. Methods/Design: One hundred participants diagnosed with stage I and stage IV periodontal disease were recruited from Hangzhou Younuo Dental Clinic between December 2020 and March 2022. The participants were divided into two groups: a study group and a control group. The study group received local administration of 1% melatonin gel, while the control group received non-surgical periodontal therapy (NSPT). Oral examinations, including X-ray examinations, were conducted to assess the severity of bone defects before treatment initiation. The primary outcome measures included treatment efficacy, periodontal indicators (PD and BI levels), inflammatory response indicators (IL-1ß, IL-6, and TNF-α levels), bone defect heights, and alveolar bone densities. Results: The treatment efficacy in the study group was significantly higher than that in the control group (95% CI -3.0 to -1.8, P = .011). Post-treatment, the study group had lower PD and BI levels compared to the control group (95% CI -1.0 to -0.8, P < .001; 95% CI -1·2 to -0.7, P < .001). Post-treatment, the study group had lower levels of IL-1ß, IL-6, and TNF-α compared to the control group, (95% CI 0.3 to -0.8, P < .001; 95% CI -4.1 to -2.1, P < .001; 95% CI -3.5 to -1.6, P < .001). Post-treatment, the study group had lower bone defect heights and higher alveolar bone densities compared to the control group (95% CI 0.7 to 1.1, P = .028; 95% CI -2.2 to -1·8, P < .001). Conclusion: Local administration of 1% melatonin gel may be an effective treatment option for improving bone defects, enhancing periodontal indicators, alleviating inflammatory responses, and improving oral health in patients with stage I and stage IV periodontal disease.

15.
JACS Au ; 4(4): 1365-1373, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38665677

ABSTRACT

Controlling the morphological evolution of electrochemical crystal growth in battery anodes is of fundamental and practical importance, particularly towards realizing practical, high-energy batteries based on metal electrodes. Such batteries require highly reversible plating/stripping reactions at the anode to achieve a long cycle life. While conformal electrodeposition and electrode reversibility have been demonstrated in numerous proof-of-concept experiments featuring moderate to low areal capacity (≤3 mA h/cm2) electrodes, achieving high levels of reversibility is progressively challenging at the higher capacities (e.g., 10 mA h/cm2), required in applications. Nonplanar, "3D" electrodes composed of electrically conductive, porous substrates are conventionally thought to overcome trade-offs between reversibility and capacity because they hypothetically "host" the electrodeposits in an electronically conducting framework, providing redundant pathways for electron flow. Here, we challenge this hypothesis and instead show that a nonplanar substrate with moderate electrical conductivity (ideally, with an electrical conductance similar to the ionic conductance of the electrolyte) and composed of a passivated cathode-facing surface efficiently regulates electro-crystallization. In contrast, an architecture with a high intrinsic electrical conductivity or with a high electrical conductivity coating on the front surface results in dominantly out-of-plane growth, making the 3D architecture in effect function as a 2D substrate. Using Zn as an example, we demonstrate that interconnected carbon fiber substrates coated by SiO2 on the front and Cu on the back successfully ushers electroplated Zn metal into the 3D framework at a macroscopic length scale, maximizing use of the interior space of the framework. The effective integration of electrodeposits into the 3D framework also enables unprecedented plating/stripping reversibility >99.5% at high current density (e.g., 10 mA/cm2) and high areal capacities (e.g., 10 mA h/cm2). Used in full-cell Zn||NaV3O8 batteries with stringent N/P ratios of 3:1, the substrates are also shown to enhance cycle life.

16.
17.
Lancet Microbe ; 5(5): e442-e451, 2024 May.
Article in English | MEDLINE | ID: mdl-38467129

ABSTRACT

BACKGROUND: The recent discovery of emerging relapsing fever group Borrelia (RFGB) species, such as Borrelia miyamotoi, poses a growing threat to public health. However, the global distribution and associated risk burden of these species remain uncertain. We aimed to map the diversity, distribution, and potential infection risk of RFGB. METHODS: We searched PubMed, Web of Science, GenBank, CNKI, and eLibrary from Jan 1, 1874, to Dec 31, 2022, for published articles without language restriction to extract distribution data for RFGB detection in vectors, animals, and humans, and clinical information about human patients. Only articles documenting RFGB infection events were included in this study, and data for RFGB detection in vectors, animals, or humans were composed into a dataset. We used three machine learning algorithms (boosted regression trees, random forest, and least absolute shrinkage and selection operator logistic regression) to assess the environmental, ecoclimatic, biological, and socioeconomic factors associated with the occurrence of four major RFGB species: Borrelia miyamotoi, Borrelia lonestari, Borrelia crocidurae, and Borrelia hermsii; and mapped their worldwide risk level. FINDINGS: We retrieved 13 959 unique studies, among which 697 met the selection criteria and were used for data extraction. 29 RFGB species have been recorded worldwide, of which 27 have been identified from 63 tick species, 12 from 61 wild animals, and ten from domestic animals. 16 RFGB species caused human infection, with a cumulative count of 26 583 cases reported from Jan 1, 1874, to Dec 31, 2022. Borrelia recurrentis (17 084 cases) and Borrelia persica (2045 cases) accounted for the highest proportion of human infection. B miyamotoi showed the widest distribution among all RFGB, with a predicted environmentally suitable area of 6·92 million km2, followed by B lonestari (1·69 million km2), B crocidurae (1·67 million km2), and B hermsii (1·48 million km2). The habitat suitability index of vector ticks and climatic factors, such as the annual mean temperature, have the most significant effect among all predictive models for the geographical distribution of the four major RFGB species. INTERPRETATION: The predicted high-risk regions are considerably larger than in previous reports. Identification, surveillance, and diagnosis of RFGB infections should be prioritised in high-risk areas, especially within low-income regions. FUNDING: National Key Research and Development Program of China.


Subject(s)
Borrelia , Relapsing Fever , Borrelia/isolation & purification , Humans , Relapsing Fever/epidemiology , Relapsing Fever/microbiology , Relapsing Fever/diagnosis , Animals
18.
Public Health Nurs ; 41(3): 476-486, 2024.
Article in English | MEDLINE | ID: mdl-38468509

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer mortality. HCC has high morbidity, high mortality, and low survival rates. Screening is one of the most significant methods of lowering incidence and death while also increasing survival. OBJECTIVES: The aim of this study was to identify the facilitators and barriers to participation in HCC screening among high-risk populations. METHODS: A comprehensive and systematic search was undertaken in PubMed, Web of Science, MEDLINE, EMBACE, EBSCOhost and the Cochrane Library. A combination of synonyms of the keywords including HCC, screening, factors and adherence were used for searching. Studies addressing the facilitators and barriers to HCC screening compliance in at-risk individuals were included. Data were synthesized using Review Manager version 5.4. A random/fixed effects model meta-analysis was performed to estimate the pooled data and expressed with odds ratio (OR) and 95% confidence interval (CI). RESULTS: A total of seven articles met the inclusion criteria. Qualitative (n = 1) and quantitative (n = 6) studies using various types of surgery were conducted. The most commonly mentioned barriers were insufficient knowledge and awareness of HCC screening, unawareness of the necessity for early detection of HCC and lack of physician recommendation. A meta-analysis of seven studies showed that individuals with a family history of HCC increased screening uptake by nearly three times (OR: 2.69, 95% CI: 1.93, 3.75). Other most frequently reported facilitators include age, education level, and perceived risk et al. CONCLUSIONS: Many barriers to HCC screening were found. Meanwhile, this review points out that improving the awareness of high-risk populations toward HCC screening is expected to enhance compliance, thereby promoting early diagnosis of liver cancer, reducing mortality, and alleviating the burden of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Incidence
19.
Proc Natl Acad Sci U S A ; 121(14): e2302967120, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547063

ABSTRACT

It is well-known that highly reactive hydroxyl radicals (HO•) can be produced by the classic Fenton system and our recently discovered haloquinone/H2O2 system, but rarely from thiol-derivatives. Here, we found, unexpectedly, that HO• can be generated from H2O2 and thiourea dioxide (TUO2), a widely used and environmentally friendly bleaching agent. A carbon-centered radical and sulfite were detected and identified as the transient intermediates, and urea and sulfate as the final products, with the complementary application of electron spin-trapping, oxygen-18 isotope labeling coupled with HPLC/MS analysis. Density functional theory calculations were conducted to further elucidate the detailed pathways for HO• production. Taken together, we proposed that the molecular mechanism for HO• generation by TUO2/H2O2: TUO2 tautomerizes from sulfinic acid into ketone isomer (TUO2-K) through proton transfer, then a nucleophilic addition of H2O2 on the S atom of TUO2-K, forming a S-hydroperoxide intermediate TUO2-OOH, which dissociates homolytically to produce HO•. Our findings represent the first experimental and computational study on an unprecedented new molecular mechanism of HO• production from simple thiol-derived sulfinic acids, which may have broad chemical, environmental, and biomedical significance for future research on the application of the well-known bleaching agent and its analogs.

20.
Sci Rep ; 14(1): 7424, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548897

ABSTRACT

The Zika virus (ZIKV) is a serious global public health crisis. A major control challenge is its multiple transmission modes. This paper aims to simulate the transmission patterns of ZIKV using a dynamic process-based epidemiological model written in ordinary differential equations, which incorporates the human-to-mosquito infection by bites and sewage, mosquito-to-human infection by bites, and human-to-human infection by sex. Mathematical analyses are carried out to calculate the basic reproduction number and backward bifurcation, and prove the existence and stability of the equilibria. The model is validated with infection data by applying it to the 2015-2016 ZIKV epidemic in Brazil. The results indicate that the reproduction number is estimated to be 2.13, in which the contributions by mosquito bite, sex and sewage account for 85.7%, 3.5% and 10.8%, respectively. This number and the morbidity rate are most sensitive to parameters related to mosquito ecology, rather than asymptomatic or human-to-human transmission. Multiple transmission routes and suitable temperature exacerbate ZIKV infection in Brazil, and the vast majority of human infection cases were prevented by the intervention implemented. These findings may provide new insights to improve the risk assessment of ZIKV infection.


Subject(s)
Aedes , Epidemics , Zika Virus Infection , Zika Virus , Animals , Humans , Brazil/epidemiology , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL
...