Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anal Methods ; 16(15): 2292-2300, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38526022

ABSTRACT

Although many excellent nanozymes have been developed, designing and synthesizing highly active nanozymes is still challenging. Here, we developed a metal-based nanozyme (metal = Co, Fe, Cu, Zn) with a three-dimensional network structure. It possesses excellent peroxidase activity and catalyzes the reaction between H2O2 and TMB to produce blue oxTMB, while antioxidants have different reducing power on the oxidation product of TMB (oxTMB), which leads to different absorbance and color changes. Using these color reactions, different nanozymes were used to form a colorimetric sensor array with seven antioxidants, and seven antioxidants were sensitively identified. And the differences between the three nanozymes were compared by density functional theory calculations and enzyme kinetic curve results. In conclusion, the colorimetric sensor array based on metal-based nanozymes provides a good strategy for the identification and detection of antioxidants, which has a broad application prospect.


Subject(s)
Antioxidants , Colorimetry , Hydrogen Peroxide , Metals , Physics
2.
ISA Trans ; 142: 501-514, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696733

ABSTRACT

This paper presents a novel real-time singularity-based fault diagnosis method for tidal current applications, specifically utilizing a five-phase permanent magnet synchronous generator with trapezoidal back electromotive forces. The proposed method incorporates an innovative orthogonal signal generator through a second-order filter, enabling the extraction of detectable singularity signatures from phase current signals. The principle of the method is elucidated through step-by-step design procedures, outlining the indicator enhancement approach and adaptive thresholds employed for enhanced robustness and adaptability. Fault detection is performed based on the improved fault indicators and an adaptive threshold law, followed by immediate fault localization that is achieved via twice average operations of the phase currents. To demonstrate the effectiveness and efficiency of the proposed method, a comparative study is carried out with a classical mean current vector-based fault diagnosis method. A small-scale experimental platform emulating a tidal current application is established for a comprehensive evaluation of both methods. The experimental results highlight the superior fault diagnosis performance of the proposed method, particularly in detecting single and multiple open circuit faults in phases or switches, while exhibiting enhanced robustness against variations in torque and speed. The simplicity of implementation and rapid detection mechanism are principal merits for the proposed method.

3.
ISA Trans ; 142: 653-662, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37648635

ABSTRACT

Model predictive control (MPC) is an outstanding control method which can achieve superior dynamic response, nonlinear control and multi-objective collaborative control. However, because of unfixed switching frequency, the harmonic spectrum of the output current is dispersed, which would make it difficult to design the output filter. In this work, a double voltage vector model predictive control (DVV-MPC) algorithm for grid-connected cascade H-bridge (CHB) multilevel inverter is presented. The algorithm not only has the advantages of MPC but also produces fixed the switching frequency of the inverter. It is realized by a modulation stage with two adjacent voltage vectors in one switching cycle. And the duty cycle of the associated voltage level is obtained by minimizing an additional cost function. This method is suitable for the cascades of n cells inverter. For reducing the computation burden and eliminating the computation delay, adjacent regions prediction method and time-delay compensation method are applied to the inverter. Finally, in this paper, the proposed strategy is applied to a single-phase grid-connected 7-level CHB inverter. Simulation and experiment are executed to show the advantages of the proposed control algorithm in dynamic state and steady state.

4.
Environ Pollut ; 311: 119820, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35940486

ABSTRACT

The coexistence of per- and polyfluoroalkyl substances (PFASs) and heavy metals have been found in soils. However, the interaction between the combined pollutants in soils remains unclear. In this study, the adsorption processes of single and combined Cr(VI) and chlorinated polyfluoroalkyl ether potassium sulfonate (F-53 B) in red, yellow and black soils were simulated. When compared with the single F-53 B and Cr(VI), the adsorption amount of the combined F-53 B and Cr(VI) on soils changed with the types of soils. The interactions between F-53 B and Cr(VI) in soils affected their adsorption behavior. The adsorption of the combined F-53 B and Cr(VI) best fit second-order kinetics and the Freundlich equation. Moreover, aluminum and iron oxides are highly correlated with adsorption of F-53 B and Cr(VI). Both F-53 B and Cr(VI) can form complexes with aluminum and iron oxides through electrostatic interactions, but PFOS could be bridged with iron oxides to form an inner sphere complex and with aluminum oxides to form an outer sphere complex. The coexistence of F-53 B and Cr(VI) could change the fluorescent group of dissolved organic matter (DOM) in soils due to the complexation between F-53 B and DOM. In addition, F-53 B increased the acid-soluble portion of Cr and decreased its residual form, which promoted the environmental risk of Cr in soils.


Subject(s)
Soil Pollutants , Soil , Adsorption , Alkanesulfonates , Aluminum , Chromium/analysis , Ether , Iron , Oxides , Potassium , Soil Pollutants/analysis
5.
J Hazard Mater ; 436: 129168, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35617732

ABSTRACT

Catalytic ceramic nanofiber membranes (Mn@CNMs) were prepared by anchoring Mn2O3 nanoparticles on the pits of attapulgite (APT) nanofibers via an impregnation and in-situ precipitation method. An integrated catalytic ozonation/membrane filtration process applying Mn@CNM was employed to degrade sulfamethoxazole (SMX) and the removal achieved up to 81.3% during a 7-h continuous filtration. The reactive oxygen species (ROS) quenching and radical detection experiments were conducted to determine the contribution of 1O2, ·OH and O2·- towards the catalytic degradation of SMX. Moreover, Mn@CNM exhibited wide applicability for real water matrix and the total removal of various kinds of emerging contaminants in real hospital wastewater reached up to 98.5%. The excellent performances of Mn@CNM were attributed to the nano-confinement effect in the membrane layer. First, anchoring Mn2O3 nanoparticles on the pits of the APT surface suppressed the growth and aggregation of nanosized Mn2O3, providing abundant reactive sites for catalytic ozonation. Second, the interlaced APT nanofibers formed nano-sized network structures, where ROS and SMX were confined in close vicinity and ROS have more chances to attack SMX. This work provides a promising strategy for the preparation of catalytic ceramic membrane with high catalytic efficiency for degradation of emerging contaminants in water.


Subject(s)
Nanofibers , Ozone , Water Pollutants, Chemical , Water Purification , Ceramics , Ozone/chemistry , Reactive Oxygen Species , Sulfamethoxazole/chemistry , Water , Water Pollutants, Chemical/chemistry , Water Purification/methods
6.
Entropy (Basel) ; 23(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34828133

ABSTRACT

The Organic Rankine Cycle (ORC) is a well-established way to recover energy from a single waste heat source. This paper aims to select the suitable configuration, number of loops, and working fluids for the Multi-Loop ORC (MLORC) by using multi-objective optimization. The thermodynamic and economic performance of MLORC in three various configurations was analyzed. Multi-objective optimizations of the series and parallel MLORC using different working fluid groups were conducted to find the optimal configuration, number of loops, and working fluid combination. The analysis results show that the series-parallel MLORC performed the worst among the three configurations. The optimization results reveal that series MLORC has a higher exergy efficiency than the parallel MLORC. The exergy efficiency of the optimal solution in series dual-loop, triple-loop, and quadruple-loop ORC is 9.3%, 7.98%, and 6.23% higher than that of parallel ORC, respectively. Furthermore, dual-loop is the optimal number of cycles for recovering energy from a single heat source, according to the grey relational grade. Finally, the series dual-loop ORC using cyclohexane\cyclohexane was the suitable configuration for utilizing a single waste heat source. The exergy efficiency and levelized cost of electricity of the series dual-loop ORC with the optimal parameters are 62.18% and 0.1509 $/kWh, respectively.

7.
Entropy (Basel) ; 23(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34356447

ABSTRACT

Organic Rankine Cycle (ORC) is an effective way to recycle waste heat sources of a marine diesel engine. The aim of the present paper is to analyze and optimize the thermoeconomic performance of a Series Heat Exchangers ORC (SHEORC) for recovering energy from jacket water, scavenge air, and exhaust gas. The three sources are combined into three groups of jacket water (JW)→exhaust gas (EG), scavenge air (SA)→exhaust gas, and jacket water→scavenge air→exhaust gas. The influence of fluid mass flow rate, evaporation pressure, and heat source recovery proportion on the thermal performance and economic performance of SHEORC was studied. A single-objective optimization with power output as the objective and multi-objective optimization with exergy efficiency and levelized cost of energy (LCOE) as the objectives are carried out. The analysis results show that in jacket water→exhaust gas and jacket water→scavenge air→exhaust gas source combination, there is an optimal heat recovery proportion through which the SHEORC could obtain the best performance. The optimization results showed that R245ca has the best performance in thermoeconomic performance in all three source combinations. With scavenge air→exhaust, the power output, exergy efficiency, and LCOE are 354.19 kW, 59.02%, and 0.1150 $/kWh, respectively. Integrating the jacket water into the SA→EG group would not increase the power output, but would decrease the LCOE.

8.
Membranes (Basel) ; 12(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35054547

ABSTRACT

This work presents an effective approach for manganese-doped Al2O3 ceramic membrane (Mn-doped membrane) fouling control by in-situ confined H2O2 cleaning in wastewater treatment. An Mn-doped membrane with 0.7 atomic percent Mn doping in the membrane layer was used in a membrane bioreactor with the aim to improve the catalytic activity toward oxidation of foulants by H2O2. Backwashing with 1 mM H2O2 solution at a flux of 120 L/m2/h (LMH) for 1 min was determined to be the optimal mode for in-situ H2O2 cleaning, with confined H2O2 decomposition inside the membrane. The Mn-doped membrane with in-situ H2O2 cleaning demonstrated much better fouling mitigation efficiency than a pristine Al2O3 ceramic membrane (pristine membrane). With in-situ H2O2 cleaning, the transmembrane pressure increase (ΔTMP) of the Mn-doped membrane was 22.2 kPa after 24-h filtration, which was 40.5% lower than that of the pristine membrane (37.3 kPa). The enhanced fouling mitigation was attributed to Mn doping, in the Mn-doped membrane layer, that improved the membrane surface properties and confined the catalytic oxidation of foulants by H2O2 inside the membrane. Mn3+/Mn4+ redox couples in the Mn-doped membrane catalyzed H2O2 decomposition continuously to generate reactive oxygen species (ROS) (i.e., HO• and O21), which were likely to be confined in membrane pores and efficiently degraded organic foulants.

9.
Environ Pollut ; 266(Pt 1): 115385, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32798984

ABSTRACT

Bioaccumulation and toxicity of per-and polyfluoroalkyl substances and metal in plants have been confirmed, however their contamination in soil and plants still requires extensive investigation. In this study the combined effects of chlorinated polyfluoroalkyl ether potassium sulfonate (F53B) and chromium (Cr) on water spinach (Ipomoea aquatica Forsk) were investigated. Compared with each single stress, the combination of F53B and Cr (VI) reduced the biomass and height and increasingly accumulated in the roots and destroyed the cell structure. Besides, the co-contamination led to the immobilization of F53B and Cr (VI) in soil, which affected their migration in soil and transfer to plants. The antioxidant response and photosynthesis of the plant weakened under the single Cr (VI) and enhanced under the single F53B treatment; however the contamination of F53B and Cr (VI) could also reduce this effect, as confirmed by the gene expression of MTa, psbA and psbcL genes. This study provides an evidence of the environmental risks resulting from the coexistence of F53B and Cr (VI).


Subject(s)
Ipomoea , Soil Pollutants/analysis , Chromium , Ether , Plant Roots/chemistry , Potassium , Spinacia oleracea , Water
10.
Sci Rep ; 10(1): 10558, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601443

ABSTRACT

Taxol is a rare but extremely effective antitumor agent extracted from Taxus yew barks. Taxus plants are valuable and rare species, and the production of taxol from them is a complex process. Therefore, taxol-producing endophytic fungi seem to be a promising alternative because of their high practical value and convenient progress. In this study, the transcriptome of an endophytic fungus, Aspergillus aculeatinus Tax-6 was analyzed in order to understand the molecular mechanisms of producing fungal taxol. The results showed that genes involved in the mevalonate (MVA) pathway and non-mevalonate (MEP) pathway were expressed, including isopentenyl pyrophosphate transferase, geranyl pyrophosphate transferase, and geranylgeranyl pyrophosphate synthetase. However, those downstream genes involved in the conversion of taxa-4(5)-11(12)-diene from geranylgeranyl pyrophosphate were not expressed except for taxane 10-beta-hydroxylase. Additionally, a mutant strain, A. aculeatinus BT-2 was obtained from the original strain, A. aculeatinus Tax-6, using fungicidin as the mutagenic agent. The taxol yield of BT-2 was 560 µg L-1, which was higher than that of Tax-6. To identify the mechanism of the difference in taxol production, we compared the transcriptomes of the two fungi and explored the changes in the gene expression between them. When compared with the original strain, Tax-6, most genes related to the MVA pathway in the mutant strain BT-2 showed upregulation, including GGPPS. Moreover, most of the downstream genes were not expressed in the mutant fungi as well. Overall, the results revealed the pathway and mechanism of taxol synthesis in endophytic fungi and the potential for the construction of taxol-producing genetic engineering strains.


Subject(s)
Aspergillus/genetics , Paclitaxel/isolation & purification , Paclitaxel/metabolism , Antineoplastic Agents/metabolism , Aspergillus/metabolism , Chromatography, High Pressure Liquid , DNA, Fungal/genetics , Endophytes/genetics , Fungi/genetics , Mass Spectrometry , Paclitaxel/biosynthesis , Taxus/genetics , Transcriptome/genetics
11.
J Environ Sci (China) ; 92: 176-186, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32430120

ABSTRACT

Per-and polyfluoroalkyl substances (PFASs) can be taken up and bioaccumulated in plants, but the toxic mechanisms of PFASs on wetland plants are still unclear. In present study, the toxic influences of perfluorooctane sulfonate (PFOS) on Eichhornia crassipes (E. crassipes) and Cyperus alternifolius (C. alternifolius) in a vertical-subsurface-flow constructed wetland were evaluated. The results showed that E. crassipes was more tolerant to PFOS stress than C. alternifolius, and the growth and chlorophyll synthesis of the two plants were promoted by low concentration (<0.1 mg/L) of PFOS, and the chlorophyll synthesis was inhibited by high concentration (10 mg/L) of PFOS but the growth did not change obviously. The catalase activity and malondialdehyde content in the leaves of the two plants increased, peroxidase activity decreased under exposure to high concentrations of PFOS, and superoxide dismutase activity did not change. Under PFOS stress, the membrane of plant leaves and the cell structure of the two wetland plants were destroyed, and the mitochondrial contour of root cells became incomplete. Tanscriptomic analysis showed that the expression levels of genes related to cell wall formation, the cell apoptosis pathway, material synthesis, and metabolism in the plants were changed by PFOS. Analysis in fluorogenic quantitative real time polymerase chain reaction (RT-qPCR) also confirmed that the photosynthesis system of E. crassipes was inhibited, while that of C. alternifolius was promoted.


Subject(s)
Alkanesulfonic Acids , Cyperus , Fluorocarbons , Wetlands
12.
PLoS One ; 14(6): e0217361, 2019.
Article in English | MEDLINE | ID: mdl-31194791

ABSTRACT

In this paper, a new prediction approach is proposed for ocean vessel heave compensation based on echo state network (ESN). To improve the prediction accuracy and enhance the robustness against noise and outliers, a generalized similarity measure called correntropy is introduced into ESN training, which is referred as corr-ESN. An iterative method based on half-quadratic minimization is derived to train corr-ESN. The proposed corr-ESN is used for the heave motion prediction. The experimental results verify its effectiveness.


Subject(s)
Noise/prevention & control , Algorithms , Neural Networks, Computer , Nonlinear Dynamics
13.
R Soc Open Sci ; 5(11): 180551, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30564386

ABSTRACT

In this study, a newly isolated oleaginous fungus, Mucor circinelloides (M. circinelloides) Q531, was able to convert mulberry branches into lipids. The highest yield and the maximum lipid content produced by the fungal cells were 42.43 ± 4.01 mg per gram dry substrate (gds) and 28.8 ± 2.85%, respectively. The main components of lignocellulosic biomass were gradually reduced during solid-state fermentation (SSF). Cellulose, hemicellulose and lignin were decreased from 45.11, 31.39 and 17.36% to 41.48, 28.71, and 15.1%, respectively. Gas chromatography analysis showed that the major compositions of the fermented products were palmitic acid (C16:0, 18.42%), palmitoleic acid (C16:1, 5.56%), stearic acid (C18:0, 5.87%), oleic acid (C18:1, 33.89%), linoleic acid (C18:2, 14.45%) and γ-linolenic acid (C18:3 n6, 22.53%) after 2 days of SSF. The fatty acid methyl esters contained unsaturated fatty acids with a ratio of 75.95%. The composition and content obtained in this study are more advantageous than those of many other biomass lipids. Meanwhile, the oleaginous fungus had a high cellulase activity of 1.39 ± 0.09 FPU gds-1. The results indicate that the enzyme activity of the isolated fungus was capable of converting the cellulose and hemicelluloses to available sugar monomers which are beneficial for the production of lipids.

14.
ISA Trans ; 68: 302-312, 2017 May.
Article in English | MEDLINE | ID: mdl-28359531

ABSTRACT

This paper proposes an imbalance fault detection method based on data normalization and Empirical Mode Decomposition (EMD) for variable speed direct-drive Marine Current Turbine (MCT) system. The method is based on the MCT stator current under the condition of wave and turbulence. The goal of this method is to extract blade imbalance fault feature, which is concealed by the supply frequency and the environment noise. First, a Generalized Likelihood Ratio Test (GLRT) detector is developed and the monitoring variable is selected by analyzing the relationship between the variables. Then, the selected monitoring variable is converted into a time series through data normalization, which makes the imbalance fault characteristic frequency into a constant. At the end, the monitoring variable is filtered out by EMD method to eliminate the effect of turbulence. The experiments show that the proposed method is robust against turbulence through comparing the different fault severities and the different turbulence intensities. Comparison with other methods, the experimental results indicate the feasibility and efficacy of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...