Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Nat Microbiol ; 9(7): 1856-1872, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806671

ABSTRACT

Adaptation to hypoxia is a major challenge for the survival of Mycobacterium tuberculosis (Mtb) in vivo. Interferon (IFN)-γ-producing CD8+ T cells contribute to control of Mtb infection, in part by promoting antimicrobial activities of macrophages. Whether Mtb counters these responses, particularly during hypoxic conditions, remains unknown. Using metabolomic, proteomic and genetic approaches, here we show that Mtb induced Rv0884c (SerC), an Mtb phosphoserine aminotransferase, to produce D-serine. This activity increased Mtb pathogenesis in mice but did not directly affect intramacrophage Mtb survival. Instead, D-serine inhibited IFN-γ production by CD8+ T cells, which indirectly reduced the ability of macrophages to restrict Mtb upon co-culture. Mechanistically, D-serine interacted with WDR24 and inhibited mTORC1 activation in CD8+ T cells. This decreased T-bet expression and reduced IFN-γ production by CD8+ T cells. Our findings suggest an Mtb evasion mechanism where pathogen metabolic adaptation to hypoxia leads to amino acid-dependent suppression of adaptive anti-TB immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Interferon-gamma , Macrophages , Mycobacterium tuberculosis , Serine , Tuberculosis , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mycobacterium tuberculosis/immunology , Mice , Serine/metabolism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Tuberculosis/immunology , Tuberculosis/microbiology , Mice, Inbred C57BL , Transaminases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Hypoxia/immunology , Hypoxia/metabolism , Female , Host-Pathogen Interactions/immunology
2.
NAR Genom Bioinform ; 6(2): lqae044, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711860

ABSTRACT

Sequence classification facilitates a fundamental understanding of the structure of microbial communities. Binary metagenomic sequence classifiers are insufficient because environmental metagenomes are typically derived from multiple sequence sources. Here we introduce a deep-learning based sequence classifier, DeepMicroClass, that classifies metagenomic contigs into five sequence classes, i.e. viruses infecting prokaryotic or eukaryotic hosts, eukaryotic or prokaryotic chromosomes, and prokaryotic plasmids. DeepMicroClass achieved high performance for all sequence classes at various tested sequence lengths ranging from 500 bp to 100 kbps. By benchmarking on a synthetic dataset with variable sequence class composition, we showed that DeepMicroClass obtained better performance for eukaryotic, plasmid and viral contig classification than other state-of-the-art predictors. DeepMicroClass achieved comparable performance on viral sequence classification with geNomad and VirSorter2 when benchmarked on the CAMI II marine dataset. Using a coastal daily time-series metagenomic dataset as a case study, we showed that microbial eukaryotes and prokaryotic viruses are integral to microbial communities. By analyzing monthly metagenomes collected at HOT and BATS, we found relatively higher viral read proportions in the subsurface layer in late summer, consistent with the seasonal viral infection patterns prevalent in these areas. We expect DeepMicroClass will promote metagenomic studies of under-appreciated sequence types.

3.
Bioinformatics ; 38(Suppl 1): i45-i52, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35758806

ABSTRACT

MOTIVATION: Phage-host associations play important roles in microbial communities. But in natural communities, as opposed to culture-based lab studies where phages are discovered and characterized metagenomically, their hosts are generally not known. Several programs have been developed for predicting which phage infects which host based on various sequence similarity measures or machine learning approaches. These are often based on whole viral and host genomes, but in metagenomics-based studies, we rarely have whole genomes but rather must rely on contigs that are sometimes as short as hundreds of bp long. Therefore, we need programs that predict hosts of phage contigs on the basis of these short contigs. Although most existing programs can be applied to metagenomic datasets for these predictions, their accuracies are generally low. Here, we develop ContigNet, a convolutional neural network-based model capable of predicting phage-host matches based on relatively short contigs, and compare it to previously published VirHostMatcher (VHM) and WIsH. RESULTS: On the validation set, ContigNet achieves 72-85% area under the receiver operating characteristic curve (AUROC) scores, compared to the maximum of 68% by VHM or WIsH for contigs of lengths between 200 bps to 50 kbps. We also apply the model to the Metagenomic Gut Virus (MGV) catalogue, a dataset containing a wide range of draft genomes from metagenomic samples and achieve 60-70% AUROC scores compared to that of VHM and WIsH of 52%. Surprisingly, ContigNet can also be used to predict plasmid-host contig associations with high accuracy, indicating a similar genetic exchange between mobile genetic elements and their hosts. AVAILABILITY AND IMPLEMENTATION: The source code of ContigNet and related datasets can be downloaded from https://github.com/tianqitang1/ContigNet.


Subject(s)
Bacteriophages , Bacteria/genetics , Bacteriophages/genetics , Metagenome , Metagenomics , Neural Networks, Computer
4.
Cell Discov ; 7(1): 90, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34608123

ABSTRACT

Pathogenic mycobacteria induce the formation of hypoxic granulomas during latent tuberculosis (TB) infection, in which the immune system contains, but fails to eliminate the mycobacteria. Fatty acid metabolism-related genes are relatively overrepresented in the mycobacterial genome and mycobacteria favor host-derived fatty acids as nutrient sources. However, whether and how mycobacteria modulate host fatty acid metabolism to drive granuloma progression remains unknown. Here, we report that mycobacteria under hypoxia markedly secrete the protein Rv0859/MMAR_4677 (Fatty-acid degradation A, FadA), which is also enriched in tuberculous granulomas. FadA acts as an acetyltransferase that converts host acetyl-CoA to acetoacetyl-CoA. The reduced acetyl-CoA level suppresses H3K9Ac-mediated expression of the host proinflammatory cytokine Il6, thus promoting granuloma progression. Moreover, supplementation of acetate increases the level of acetyl-CoA and inhibits the formation of granulomas. Our findings suggest an unexpected mechanism of a hypoxia-induced mycobacterial protein suppressing host immunity via modulation of host fatty acid metabolism and raise the possibility of a novel therapeutic strategy for TB infection.

5.
Front Psychol ; 12: 810727, 2021.
Article in English | MEDLINE | ID: mdl-35069398

ABSTRACT

Compare with other professions, teachers are reported to have a higher risk of poor mental health. This study examined the relationships between emotional intelligence, perceived organizational justice, and mental health among Chinese high school teachers. Three hundred and eighty-one high school teachers, with their age range between 21 and 50 years, were administered the Emotional Intelligence Scale, Perceived Organizational Justice Scale, and Mental Health Scale. The result found that emotional intelligence and perceived organizational justice directly influence the mental health of high school teachers. In addition, perceived organizational justice mediated the association between emotional intelligence and mental health. Moreover, the present study analyzes the different role of subtypes of perceived organizational justice on the relationships between emotional intelligence and mental health, and the results showed that the mediating effects of perceived distributive justice and interactive justice on emotional intelligence and mental health are not significant, only the perceived procedural justice mediated the relationships between emotional intelligence and teachers' mental health. The results are discussed in a conceptual context.

6.
Front Psychol ; 12: 811260, 2021.
Article in English | MEDLINE | ID: mdl-35082733

ABSTRACT

This study aimed to explore the mediating role of emotional regulation strategies in the relationship between emotional intelligence (EI) and subjective well-being (SWB) among Chinese university teachers, and evaluate whether effort-reward imbalance moderated the mediating effect of emotional regulation strategies. A total of 308 Chinese university teachers were recruited for this study. The results showed that emotional regulation strategies played a partial mediating role in the relationship between EI and SWB. Moreover, an effort-reward imbalance moderated the relationship between emotional regulation strategies and SWB. For individuals with more balanced perceptions, EI had a significant effect on SWB via cognitive reappraisal, while for individuals with more imbalanced perceptions, EI did not have a significant effect on SWB via cognitive reappraisal. These findings provide a better understanding of the effects of EI and emotional regulation strategies on SWB, which could provide interventions for promoting SWB among teachers.

7.
Nature ; 577(7792): 682-688, 2020 01.
Article in English | MEDLINE | ID: mdl-31942069

ABSTRACT

Mycobacterium tuberculosis is an intracellular pathogen that uses several strategies to interfere with the signalling functions of host immune molecules. Many other bacterial pathogens exploit the host ubiquitination system to promote pathogenesis1,2, but whether this same system modulates the ubiquitination of M. tuberculosis proteins is unknown. Here we report that the host E3 ubiquitin ligase ANAPC2-a core subunit of the anaphase-promoting complex/cyclosome-interacts with the mycobacterial protein Rv0222 and promotes the attachment of lysine-11-linked ubiquitin chains to lysine 76 of Rv0222 in order to suppress the expression of proinflammatory cytokines. Inhibition of ANAPC2 by specific short hairpin RNA abolishes the inhibitory effect of Rv0222 on proinflammatory responses. Moreover, mutation of the ubiquitination site on Rv0222 impairs the inhibition of proinflammatory cytokines by Rv0222 and reduces virulence during infection in mice. Mechanistically, lysine-11-linked ubiquitination of Rv0222 by ANAPC2 facilitates the recruitment of the protein tyrosine phosphatase SHP1 to the adaptor protein TRAF6, preventing the lysine-63-linked ubiquitination and activation of TRAF6. Our findings identify a previously unrecognized mechanism that M. tuberculosis uses to suppress host immunity, and provide insights relevant to the development of effective immunomodulators that target M. tuberculosis.


Subject(s)
Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Host-Pathogen Interactions/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Ubiquitination , Anaphase-Promoting Complex-Cyclosome/chemistry , Animals , Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/immunology , Cytokines/metabolism , Female , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lysine/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Tuberculosis/microbiology , Virulence/immunology
8.
Nat Microbiol ; 4(8): 1378-1388, 2019 08.
Article in English | MEDLINE | ID: mdl-31110366

ABSTRACT

Mycobacterium tuberculosis (Mtb)-derived components are usually recognized by pattern recognition receptors to initiate a cascade of innate immune responses. One striking characteristic of Mtb is their utilization of different type VII secretion systems to secrete numerous proteins across their hydrophobic and highly impermeable cell walls, but whether and how these Mtb-secreted proteins are sensed by host immune system remains largely unknown. Here, we report that MPT53 (Rv2878c), a secreted disulfide-bond-forming-like protein of Mtb, directly interacts with TGF-ß-activated kinase 1 (TAK1) and activates TAK1 in a TLR2- or MyD88-independent manner. MPT53 induces disulfide bond formation at C210 on TAK1 to facilitate its interaction with TRAFs and TAB1, thus activating TAK1 to induce the expression of pro-inflammatory cytokines. Furthermore, MPT53 and its disulfide oxidoreductase activity is required for Mtb to induce the host inflammatory responses via TAK1. Our findings provide an alternative pathway for host signalling proteins to sense Mtb infection and may favour the improvement of current vaccination strategies.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Immunity, Innate/immunology , Mycobacterium tuberculosis/metabolism , Transforming Growth Factor beta/metabolism , Tuberculosis/immunology , Tuberculosis/metabolism , Animals , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cytokines/metabolism , Female , HEK293 Cells , Humans , Inflammation , Lung/pathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/genetics , Myeloid Differentiation Factor 88/metabolism , Oxidation-Reduction , Signal Transduction , Toll-Like Receptor 2/metabolism , Tuberculosis/pathology , Type VII Secretion Systems/metabolism
9.
Nature ; 563(7729): 131-136, 2018 11.
Article in English | MEDLINE | ID: mdl-30356214

ABSTRACT

Accurate repair of DNA double-stranded breaks by homologous recombination preserves genome integrity and inhibits tumorigenesis. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that activates innate immunity by initiating the STING-IRF3-type I IFN signalling cascade1,2. Recognition of ruptured micronuclei by cGAS links genome instability to the innate immune response3,4, but the potential involvement of cGAS in DNA repair remains unknown. Here we demonstrate that cGAS inhibits homologous recombination in mouse and human models. DNA damage induces nuclear translocation of cGAS in a manner that is dependent on importin-α, and the phosphorylation of cGAS at tyrosine 215-mediated by B-lymphoid tyrosine kinase-facilitates the cytosolic retention of cGAS. In the nucleus, cGAS is recruited to double-stranded breaks and interacts with PARP1 via poly(ADP-ribose). The cGAS-PARP1 interaction impedes the formation of the PARP1-Timeless complex, and thereby suppresses homologous recombination. We show that knockdown of cGAS suppresses DNA damage and inhibits tumour growth both in vitro and in vivo. We conclude that nuclear cGAS suppresses homologous-recombination-mediated repair and promotes tumour growth, and that cGAS therefore represents a potential target for cancer prevention and therapy.


Subject(s)
Cell Nucleus/metabolism , Cell Transformation, Neoplastic/pathology , Neoplasms/metabolism , Neoplasms/pathology , Nucleotidyltransferases/metabolism , Recombinational DNA Repair , Active Transport, Cell Nucleus , Adult , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/enzymology , DNA Breaks, Double-Stranded , DNA Damage , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Neoplasms/genetics , Nucleotidyltransferases/deficiency , Phosphorylation , Phthalazines/pharmacology , Piperazines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Binding/drug effects , Recombinational DNA Repair/genetics , src-Family Kinases/metabolism
10.
Emerg Microbes Infect ; 7(1): 34, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29559631

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) infection remains a large global public health problem. One striking characteristic of Mtb is its ability to adapt to hypoxia and trigger the ensuing transition to a dormant state for persistent infection, but how the hypoxia response of Mtb is regulated remains largely unknown. Here we performed a quantitative acetylome analysis to compare the acetylation profile of Mtb under aeration and hypoxia, and showed that 377 acetylation sites in 269 Mtb proteins were significantly changed under hypoxia. In particular, deacetylation of dormancy survival regulator (DosR) at K182 promoted the hypoxia response in Mtb and enhanced the transcription of DosR-targeted genes. Mechanistically, recombinant DosRK182R protein demonstrated enhanced DNA-binding activity in comparison with DosRK182Q protein. Moreover, Rv0998 was identified as an acetyltransferase that mediates the acetylation of DosR at K182. Deletion of Rv0998 also promoted the adaptation of Mtb to hypoxia and the transcription of DosR-targeted genes. Mice infected with an Mtb strain containing acetylation-defective DosRK182R had much lower bacterial counts and less severe histopathological impairments compared with those infected with the wild-type strain. Our findings suggest that hypoxia induces the deacetylation of DosR, which in turn increases its DNA-binding ability to promote the transcription of target genes, allowing Mtb to shift to dormancy under hypoxia.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Lysine/metabolism , Mycobacterium tuberculosis/metabolism , Oxygen/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Tuberculosis/microbiology , Acetylation , Amino Acid Motifs , Bacterial Proteins/genetics , DNA-Binding Proteins , Gene Expression Regulation, Bacterial , Humans , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Protein Kinases/genetics
11.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 422-427, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27376815

ABSTRACT

The purpose of this research was to evaluate the structural stress and deformation of a newly designed onplant miniplate anchorage system compared to a standard anchorage system. A bone block integrated with a novel miniplate and fixation screw system was simulated in a three-dimensional model and subjected to force at different directions. The stress distribution and deformation of the miniplate system and cortical bone were evaluated using the three-dimensional finite element method. The results showed that the stress on the plate system and bone was linearly proportional to the force magnitude and was higher when the force was in a vertical direction (Y-axis). Stress and deformation values of the two screws (screw 1 and 2) were asymmetric when the force was added along Y-axis and was greater in screw 1. The highest deformation value of the screws was 7.5148 µm, much smaller than the limit value. The load was decreased for each single miniscrew, and the ability of the new anchorage system to bear the load was also enhanced to some degree. It was suggested that the newly designed onplant miniplate anchorage system is effective, easily implanted and minimally invasive.


Subject(s)
Bone Plates , Bone Screws , Finite Element Analysis , Imaging, Three-Dimensional/methods , Orthodontic Anchorage Procedures/instrumentation , Biomechanical Phenomena , Cancellous Bone/anatomy & histology , Cancellous Bone/surgery , Computer Simulation , Cortical Bone/anatomy & histology , Cortical Bone/surgery , Humans , Orthodontic Anchorage Procedures/methods , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL