Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 5(11): 1801028, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30479931

ABSTRACT

Since the advent of digital coding metamaterials, a new paradigm is unfolded to sample, compute and program electromagnetic waves in real time with one physical configuration. However, one inconvenient truth is that actively tunable building blocks such as diodes, varactors, and biased lines must be individually controlled by a computer-assisted field programmable gate array and physically connected by electrical wires to the power suppliers. This issue becomes more formidable when more elements are needed for more advanced and multitasked metadevices and metasystems. Here, a remote-mode metasurface is proposed and realized that is addressed and tuned by illuminating light. By tuning the intensity of light-emitting diode light, a digital coding metasurface composed of such light-addressable elements enables dynamically reconfigurable radiation beams in a control-circuitry-free way. Experimental demonstration is validated at microwave frequencies. The proposed dynamical remote-tuning metasurface paves a way for constructing unprecedented digital metasurfaces in a noncontact remote fashion.

2.
J Phys Condens Matter ; 30(13): 134004, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29380741

ABSTRACT

In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.

3.
Sci Rep ; 7(1): 10576, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874876

ABSTRACT

In this paper, we propose a scheme to construct a new type of ultra-compact rejection filter by loading split-ring resonators (SRRs) on the transmission line of spoof surface plasmon polaritons (SPPs). From the dispersion analysis of the spoof SPP transmission line with and without the SRR loading, we clearly reveal the mechanism of the rejection characteristic for this compact filter. Meanwhile, we fabricate two spoof SPPs waveguides loaded with different amounts of metamaterials particles, and experimentally test them using an Agilent Vector Network Analyzer (VNA) and a homemade near-field scanning system. Both the simulated and measured results agree well with our theoretical analysis and demonstrate the excellent filtering characteristics of our design. The isolation of both filters can be less than -20 dB, and even reach -40 dB at rejection frequencies. The proposed rejection and stop-band filters show important potentials to develop integrated plasmonic functional devices and circuits at microwave and terahertz frequencies.

4.
Sci Rep ; 7: 41077, 2017 01 23.
Article in English | MEDLINE | ID: mdl-28112238

ABSTRACT

Spoof surface plasmon polariton (SPP) has been realized at low frequencies through corrugated metallic structures. As two-dimensional application, the ultrathin SPP transmission lines (TLs) have been proposed with great potentials for microwave compact circuits due to the strong field confinement and enhancement, as well as controllable dispersive properties. In this paper, we examine the radiation loss at small-radius bend, which may cause severe crosstalk in highly-integrated circuits or systems, for the SPP TLs. We theoretically analyze that the SPP TL has essential merit of low radiation loss, and show better performance of SPP TL than the conventional microstrip line through numerical simulations and experiments. Both simulated and measured results demonstrate that the new type of transmission line can efficiently suppress the radiation loss at small-radius bend, and hence reduce the crosstalk in circuits and systems.

5.
Adv Sci (Weinh) ; 3(10): 1600156, 2016 10.
Article in English | MEDLINE | ID: mdl-27840801

ABSTRACT

The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.

6.
Sci Rep ; 6: 37605, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27883028

ABSTRACT

Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

7.
Sci Rep ; 6: 30288, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27444147

ABSTRACT

Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems.

8.
Light Sci Appl ; 5(5): e16076, 2016 May.
Article in English | MEDLINE | ID: mdl-30167164

ABSTRACT

Metamaterials based on effective media can be used to produce a number of unusual physical properties (for example, negative refraction and invisibility cloaking) because they can be tailored with effective medium parameters that do not occur in nature. Recently, the use of coding metamaterials has been suggested for the control of electromagnetic waves through the design of coding sequences using digital elements '0' and '1,' which possess opposite phase responses. Here we propose the concept of an anisotropic coding metamaterial in which the coding behaviors in different directions are dependent on the polarization status of the electromagnetic waves. We experimentally demonstrate an ultrathin and flexible polarization-controlled anisotropic coding metasurface that functions in the terahertz regime using specially designed coding elements. By encoding the elements with elaborately designed coding sequences (both 1-bit and 2-bit sequences), the x- and y-polarized waves can be anomalously reflected or independently diffused in three dimensions. The simulated far-field scattering patterns and near-field distributions are presented to illustrate the dual-functional performance of the encoded metasurface, and the results are consistent with the measured results. We further demonstrate the ability of the anisotropic coding metasurfaces to generate a beam splitter and realize simultaneous anomalous reflections and polarization conversions, thus providing powerful control of differently polarized electromagnetic waves. The proposed method enables versatile beam behaviors under orthogonal polarizations using a single metasurface and has the potential for use in the development of interesting terahertz devices.

9.
Sci Rep ; 5: 11732, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26122861

ABSTRACT

An approach of generating broadband Bessel beams is presented. The broadband Bessel beams are produced by a gradient index (GRIN) metamaterial lens illuminated by broadband waveguide antenna. The metamaterial lens is constructed with multi-layered structure and each layer is composed of GRIN metamaterials. The metamaterials are designed as dielectric plates printed with metallic patterns in the center region and drilled by air holes near the edge, which operate in wide band. The metamaterial lens serves as a convertor which transforms the spherical beams emitted from feed into conical beams. The conical beams form quasi-Bessel beams in the near-field region. The aperture diameter of the GRIN lens is much larger than the operating wavelength to guarantee the transformation. In principle, this kind of metamaterial lens can produce Bessel beams at arbitrary distance by designing the refractive-index distribution. To verify the approach, we have designed, fabricated and tested a metamaterial lens. Full-wave simulation and experiment results have proved that the generated Bessel beams can be maintained in distance larger than 1 meter within a ranging from 12 GHz to 18 GHz.

10.
Sci Rep ; 5: 9113, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25766083

ABSTRACT

We propose a new approach to control the amplitude and phase distributions of electromagnetic fields over the aperture of a horn antenna. By loading a metamaterial lens inside the horn antenna, a tapered amplitude distribution of the aperture field is achieved, which can suppress the side-lobe radiations of the antenna. The metamaterial is further manipulated to achieve a flat phase distribution on the horn aperture to avoid the gain reduction that usually suffers in the conventional low-sidelobe antenna designs. A prototype of the metamaterial-loaded horn antenna is designed and fabricated. Both numerical simulations and measured results demonstrate the tapered aperture-field distribution and significant reduction of side-lobe and back-lobe radiations in the operating frequency band.

SELECTION OF CITATIONS
SEARCH DETAIL
...