Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Se Pu ; 42(6): 524-532, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38845513

ABSTRACT

The stationary phase is the heart of chromatographic separation technology and a critical contributor to the overall separation performance of a chromatographic separation technique. However, traditional silicon-based materials designed for this purpose usually feature complex preparation processes, suboptimal permeability, pronounced mass-transfer resistance, and limited pH-range compatibility. These limitations have spurred ongoing research efforts aimed at developing new chromatographic stationary phases characterized by higher separation efficiency, adaptable selectivity, and a broader scope of applicability. In this context, the scientific community has made significant strides toward the development of new-generation materials suitable for use as chromatographic stationary phases. These materials include carbon-based nanomaterial arrays, carbon quantum dots, and two-dimensional (2D) materials. 2D-materials are characterized by nanometer-scale thicknesses, extensive specific surface areas, distinctive layered structures, and outstanding mechanical properties under standard conditions. Thus, these materials demonstrate excellent utility in various applications, such as electrical and thermal conductivity enhancements, gas storage and separation solutions, membrane separation technologies, and catalysis. Graphene, which is arguably the most popular 2D-material used for chromatographic separation, consists of a 2D-lattice of carbon atoms arranged in a single layer, with a large specific surface area and efficient adsorption properties. Its widespread adoption in research and various industries is a testament to its versatility and effectiveness. In addition to graphene, the scientific community has developed various 2D-materials that mirror the layered structures of graphene, such as boron nitride, transition-metal sulfides, and 2D porous organic frameworks, all of which offer unique advantages. 2D porous organic frameworks, in particular, have received attention because of their nanosheet morphology, one-dimensional pores, and special interlayer forces; thus, these frameworks are considered promising candidate chromatographic stationary phase materials. Such recognition is especially true for 2D-metal organic frameworks (MOFs) and 2D-covalent organic frameworks (COFs), which exhibit low densities, high porosities, and substantial specific surface areas. The modifiability of these materials, in terms of pore size, shape, functional groups, and layer-stacking arrangements allows for excellent separation selectivity, highlighting their promising potential in chromatographic separation. Compared with their three-dimensional counterparts, 2D-MOFs feature a simple pore structure that offers reduced mass-transfer resistance and enhanced column efficiency. These attributes highlight the advantages of 2D-MOF nanosheets as chromatographic stationary phases. Similarly, 2D-COFs, given their high specific surface area and porosity, not only exhibit great thermal stability and chemical tolerance but also support a wide selection of solvents and operational conditions. Therefore, their role in the preparation of chromatographic stationary phases is considered highly promising. This review discusses the latest research developments in 2D porous organic framework materials in the context of gas- and liquid-chromatographic stationary phases. It introduces the synthesis methods for these novel materials, elucidates their retention mechanisms, and describes the applications of other 2D-materials, such as graphene, its derivatives, graphitic carbon nitride, and boron nitride, in chromatography. This review aims to shed light on the promising development prospects and future directions of 2D-materials in the field of chromatographic separation, offering valuable insights into the rational design and application of new 2D-materials in chromatography.

2.
Chem Sci ; 15(11): 4106-4113, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38487231

ABSTRACT

The modulation of two-dimensional metal-organic framework (2-D MOF) nanosheet stacking is an effective means to improve the properties and promote the application of nanosheets in various fields. Here, we employed a series of alcohol guest molecules (MeOH, EtOH and PrOH) to modulate Zr-BTB (BTB = benzene-1,3,5-tribenzoate) nanosheets and to generate untwisted stacking. The distribution of stacking angles was statistically analyzed from high-angle annular dark-field (HAADF) and fast Fourier transform (FFT) images. The ratios of untwisted stacking were calculated, such as 77.01% untwisted stacking for MeOH, 83.45% for EtOH, and 85.61% for PrOH. The obtained untwisted Zr-BTB showed good separation abilities for different substituted benzene isomers, superior para selectivity and excellent column stability and reusability. Control experiments of 2-D Zr-TCA (TCA = 4,4',4''-tricarboxytriphenylamine) and Zr-TATB (TATB = 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzoic acid) nanosheets with similar pore sizes and stronger polarity regulated by the alcohol guests exhibited moderate separation performance. The electron microscopy images revealed that polar alcohol regulation dominantly generated the twisted stacking of Zr-TCA and Zr-TATB with various Moiré patterns. Polar guest molecules, such as alcohols, provide strong host-guest interactions during the regulation of MOF nanosheet stacking, providing an opportunity to design new porous Moiré materials with application prospects.

3.
Anal Chem ; 95(51): 18760-18766, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38078811

ABSTRACT

In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.

4.
J Am Chem Soc ; 145(49): 26580-26591, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38029332

ABSTRACT

The precise modulation of nanosheet stacking modes introduces unforeseen properties and creates momentous applications but remains a challenge. Herein, we proposed a strategy using bipolar molecules as torque wrenches to control the stacking modes of 2-D Zr-1,3,5-(4-carboxylphenyl)-benzene metal-organic framework (2-D Zr-BTB MOF) nanosheets. The bipolar phenyl-alkanes, phenylmethane (P-C1) and phenyl ethane (P-C2), predominantly instigated the rotational stacking of Zr-BTB-P-C1 and Zr-BTB-P-C2, displaying a wide angular distribution. This included Zr-BTB-P-C1 orientations at 0, 12, 18, and 24° and Zr-BTB-P-C2 orientations at 0, 6, 12, 15, 24, and 30°. With reduced polarity, phenyl propane (P-C3) and phenyl pentane (P-C5) introduced steric hindrance and facilitated alkyl hydrophobic interactions with the nanosheets, primarily resulting in the modulation of eclipsed stacking for Zr-BTB-P-C3 (64.8%) and Zr-BTB-P-C5 (93.3%) nanosheets. The precise angle distributions of four Zr-BTB-P species were in agreement with theoretical calculations. The alkyl induction mechanism was confirmed by the sequential guest replacement and 2-D 13C-1H heteronuclear correlation (HETCOR). In addition, at the single-particle level, we first observed that rotational stacked pores exhibited similar desorption rates for xylene isomers, while eclipsed stacked pores showed significant discrepancy for xylenes. Moreover, the eclipsed nanosheets as stationary phases exhibited high resolution, selectivity, repeatability, and durability for isomer separation. The universality was proven by another series of bipolar acetate-alkanes. This bipolar molecular torque wrench strategy provides an opportunity to precisely control the stacking modes of porous nanosheets.

5.
Se Pu ; 41(10): 853-865, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875408

ABSTRACT

Metal organic frameworks (MOFs) are assembled from metal ions or clusters and organic ligands. The high tunability of these components offers a solid structural foundation for achieving efficient gas chromatography (GC) separation. This review demonstrates that the design of high performance MOFs with suitable stationarity should consider both the thermodynamic interactions provided by these MOFs and the kinetic diffusion of analytes. Thermodynamic parameters are basic indicators for describing the interactions between various analytes and the stationary phase. Thermodynamic parameters such as retention factors, McReynolds constants, enthalpy changes, and entropy changes can reflect the relative intensity of thermodynamic interactions. For example, a larger enthalpy change indicates a stronger thermodynamic interaction between the analytes and stationary phase, whereas a smaller enthalpy change indicates a weaker interaction. In addition, the degree of entropy change reflects the relative degrees of freedom of analytes in the stationary phase. A larger entropy change indicates that the analytes have fewer degrees of freedom in the stationary phase. The higher the degree of restriction, the closer the adsorption of the analytes and, thus, the longer the retention time. Thermodynamic interactions, such as metal affinity, π-π interactions, polarity, and chiral sites, can be rationally introduced into MOF structures by pre- or post-modifications depending on the target analytes. These tailored thermodynamic interactions create a favorable environment with subtle differences for efficient analyte separation. For example, MOF stationarity may require large conjugation centers to provide specific π-π interactions to separate benzenes. Chiral groups may be required in the MOF structure to provide sufficient interactions to separate chiral isomers. The kinetic diffusion rate of the analytes is another critical factor that affects the separation performance of MOFs. The diffusion coefficients of analytes in the stationary phase (Ds) can be used to evaluate their diffusion rates. The chromatographic dynamics equation illustrates that the chromatographic peak of analytes tends to be sharper and more symmetrical when the Ds is large, whereas a wider trailing peak may appear when the Ds is small. The Van Deemter equation also proves that a low Ds may lead to a high theoretical plate height and low column efficiency, whereas a high Ds may lead to a low theoretical plate height and increased column efficiency. Analyte diffusion can be significantly influenced by the pore size, shape, particle size, and packing mode of MOFs. For instance, an excessively small pore size results in increased mass transfer resistance, which affects the diffusion of analytes in the stationary phase, probably leading to serious peak trailing. Thus, a suitable pore size is required to enhance the kinetic diffusion of analytes and improve the separation performance of MOFs. Theoretically, the design of a high performance MOF stationary phase requires the creation of routes for the rapid diffusion of analytes. However, the separation ability of an MOF is determined by not only the kinetic diffusion rate of the analytes but also the thermodynamic interactions it provides. An excessively fast diffusion rate may lead to insufficient interactions between the analytes and MOFs, compromising their ability to effectively separate different analytes. The thermodynamic interactions and kinetic diffusion of analytes are synergistic and mutually essential. Therefore, this review concludes with research on the influence of both the thermodynamic interactions and kinetic diffusion of analytes on the performance of MOF stationary phases. Based on the findings of this review, we propose that high performance MOF stationary phases can be achieved by balancing the thermodynamic interactions and kinetic diffusion of analytes in these phases through the rational design of the MOF structure. We believe that this review provides useful guidelines for the design of high performance MOF stationary phases.

6.
Nat Commun ; 14(1): 5347, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660056

ABSTRACT

Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H4TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L1 or L2 at pocket A or B, the framework flexibility along the b-axis or c-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.

7.
Chem Sci ; 13(40): 11896-11903, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36320898

ABSTRACT

Local flexibility in a metal-organic framework is intriguing for reconstructing a microenvironment to distinguish different guest molecules by emphasizing their differences. Herein, guest-adaptive flexibility is observed in a metal-organic framework for efficiently discriminating aromatic isomers. Microcrystal electron diffraction directly reveals that the anthracene rings can rotate around the single bond with the adsorption of guest molecules. Disorder transformation of the ligand enables the preferential adsorption of ethylbenzene over other xylene isomers. Especially, a coated capillary column combining single/multi-component adsorption confirms a unique separation order of ethylbenzene > p-xylene > m-xylene > o-xylene with excellent selectivities, which has not been reported in other materials. Density functional theory calculations and the calculated Hirshfeld surface of guest molecules in the framework demonstrate that a guest-induced splint-like confinement structure makes the main contribution to such separation performance. This finding will provide a rational strategy for molecular recognition utilizing the local flexibility of metal-organic frameworks.

8.
Anal Chem ; 94(41): 14251-14256, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36194134

ABSTRACT

Peak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs. Three zirconium-based MOFs (NU-1000, PCN-608, and PCN-222) with different organic ligands were synthesized with sizes of tens of micrometers and hundreds of nanometers, respectively. All the nanoscale MOFs exhibited exceedingly higher separation abilities than the respective microscale MOFs. The mechanism investigation proved that reducing the particle size can reduce the mass transfer resistance, thus enhancing the column efficiency by controlling the separation kinetics. Modulating the particle size of MOFs is an efficient way to enhance the separation capability of "low-performance" MOFs and to design high-performance MOF stationary phases.

9.
Chem Sci ; 12(11): 4104-4110, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-34163681

ABSTRACT

Modulating different stacking modes of nanoscale metal-organic frameworks (MOFs) introduces different properties and functionalities but remains a great challenge. Here, we describe a morphology engineering method to modulate the stacking modes of nanoscale NU-901. The nanoscale NU-901 is stacked through solvent removal after one-pot solvothermal synthesis, in which different morphologies from nanosheets (NS) to interpenetrated nanosheets (I-NS) and nanoparticles (NP) were obtained successfully. The stacked NU-901-NS, NU-901-I-NS, and NU-901-NP exhibited relatively aligned stacking, random stacking, and close packing, respectively. The three stacked nanoscale NU-901 exhibited different separation abilities and all showed better performance than bulk phase NU-901. Our work provides a new morphology engineering route for the modulation of the stacking modes of nano-sized MOFs and improves the separation abilities of MOFs.

10.
Angew Chem Int Ed Engl ; 60(13): 6920-6925, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33480119

ABSTRACT

The tuning of metal-organic framework (MOF) nanosheet stacking modes from molecular level was rarely explored although it significantly affected the properties and applications of nanosheets. Here, the different stacking modes of Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework nanosheets were synthesized through the induction of different host-guest noncovalent interactions. The solvents of methyl benzene and ethyl acetate induced twisted stacking of nanosheets with the specific rotation angles of 12°, 18°, 24° and 6°, 18°, 24°, 30°, respectively, which was in agreement with theoretical calculations. Meanwhile, the alkanes were likely to vertically enter the pores of Zr-BTB nanosheets because of steric hindrance and hydrophobic interactions, resulting in the untwisted stacking of nanosheets. The untwisted ordered nanopores showed the excellent gas chromatographic separations of benzene derivative isomers, which was better than twisted nanosheets stacking and commercial columns. This work uncovers a rational strategy to control the stacking of two-dimensional MOF nanosheets.

11.
J Chromatogr A ; 1632: 461604, 2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33080532

ABSTRACT

Fine-tuning of the SiF62--containing metal-organic frameworks (SIFSIX) through the substitution of metal centers and ligands changed the apertures from 8.3 Å to 3.8 Å, resulting in ultramicropores and notably improving the separation performance of alkane isomers. Herein, we reported SIFSIX-1-Zn, SIFSIX-1-Cu and SIFSIX-3-Zn as representative stationary phases for capillary gas chromatography (GC). The capillary column coated with ultramicroporous SIFSIX-3-Zn efficiently separated the alkane isomers and benzene homologues, which outperformed SIFSIX-1-Zn and SIFSIX-1-Cu. This resulted from size matching between the window of the ultramicroporous SIFSIX-3-Zn and the analytes, which was also supported by McReynolds constants, column efficiency and peak tailing effect. It opened up a new avenue for ultramicroporous materials in the chromatography separation of isomers.


Subject(s)
Chromatography, Gas/methods , Metal-Organic Frameworks/chemistry , Alkanes/chemistry , Benzene/chemistry , Isomerism , Porosity
12.
Nat Commun ; 10(1): 2911, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31266966

ABSTRACT

The stacking between nanosheets is an intriguing and inevitable phenomenon in the chemistry of nano-interfaces. Two-dimensional metal-organic framework nanosheets are an emerging type of nanosheets with ultrathin and porous features, which have high potential in separation applications. Here, the stacking between single-layer metal-organic framework nanosheets is revealed to show three representative conformations with tilted angles of 8°, 14°, and 30° for Zr-1, 3, 5-(4-carboxylphenyl)-benzene framework as an example. Efficient untwisted stacking strategy by simple heating is proposed. A detailed structural analysis of stacking modes reveals the creation of highly ordered sub-nanometer micropores in the interspacing of untwisted nano-layers, yielding a high-resolution separator for the pair of para-/meta-isomers over the twisted counterparts and commercial HP-5MS and VF-WAXMS columns. This general method is proven by additional nanosheet examples and supported by Grand Canonical Monte Carlo simulation. This finding will provide a synthetic route in the rational design of functionalities in two-dimensional metal-organic framework nanosheet.

13.
Chem Asian J ; 14(20): 3462-3473, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31294526

ABSTRACT

Metal-organic frameworks (MOFs) have been applied in various fields because of their fascinating structures and excellent properties. MOFs can serve as stationary phases in gas chromatography (GC), which has led to exceptional improvements of performance. Here, we summarize the application of MOFs in GC based on the classification of analytes. The advantages and separation mechanism of MOFs as stationary phases in GC are discussed in combination with the characteristics and structures of MOFs. The limitations are also summarized in this review, which can provide prospects on further research for the applications of MOFs.

14.
Sex Dev ; 11(5-6): 307-319, 2017.
Article in English | MEDLINE | ID: mdl-28848222

ABSTRACT

Despite widespread temperature-dependent sex determination (TSD) in reptiles, it is still unclear how the molecular network responds to temperature variation and drives the sexual fate. Profiling of sex-related genes is the first step in understanding the sex determination system in reptiles. In this study, we cloned the full-length coding sequences of Cyp19a1, Foxl2, Rspo1, Sf1, and Sox9 in an Asian freshwater turtle (Mauremys reevesii) with TSD and identified the expression patterns of these genes and Dmrt1 at different incubation temperatures to understand their roles in urogenital development. Our results showed that Cyp19a1, Foxl2, and Rspo1 were expressed in the adrenal-kidney-gonadal complex at a high level in females, while Sf1 and Dmrt1 were highly expressed in males. In addition, Foxl2 and Rspo1 showed sex-dimorphic expression in the presumed early thermosensitive period (TSP), Dmrt1 was upregulated at the beginning of the presumed TSP, and Sox9 did not show sex-dimorphic expression until the end of the presumed TSP. These results suggest that Foxl2 and Rspo1 are probably upstream genes involved in female sex determination and that Dmrt1 may be a key factor in male sex determination. Therefore, our study provides a solid foundation for further investigations on the molecular mechanism underlying sex determination in M. reevesii.


Subject(s)
Sex Determination Processes/physiology , Transcription Factors/metabolism , Animals , Female , Forkhead Box Protein L2/metabolism , Male , Temperature , Thrombospondins/metabolism , Turtles
15.
Sex Dev ; 9(2): 111-7, 2015.
Article in English | MEDLINE | ID: mdl-25676546

ABSTRACT

The sex determination mechanism for the Chinese soft-shelled turtle (Pelodiscus sinensis) is subject to controversy. Some populations have been shown to possess sex chromosomes and thus genotypic sex determination (GSD), while others were reported to exhibit temperature-dependent sex determination (TSD). To test whether TSD and GSD coexist in this species or whether populations differ in their sex-determining system, we conducted egg incubation experiments to investigate how temperature influences hatchling sex in a wide range of populations of this species in China. In parallel, we used comparative genome hybridization (CGH) to study the micro-sex chromosomes of adult P. sinensis in the 2 populations that were previously identified to be TSD. The incubation experiments showed that temperature did not affect hatchling sex in any of the studied populations. CGH indicated that turtles have micro-sex chromosomes of the female heterogametic (ZZ/ZW) system in the 2 disputed populations. These results indicate that P. sinensis is a GSD rather than a TSD species. Thus, the apparent coexistence of TSD and GSD in this species is the result of previous misdiagnosis in purportedly TSD populations.


Subject(s)
Cytogenetic Analysis/methods , Sex Determination Processes , Temperature , Animals , China , Chromosomes/genetics , Comparative Genomic Hybridization , Female , Geography , Male , Turtles
SELECTION OF CITATIONS
SEARCH DETAIL
...