Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Medicine (Baltimore) ; 102(49): e36515, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065877

ABSTRACT

The dysregulation of some solute carrier (SLC) proteins has been linked to a variety of diseases, including diabetes and chronic kidney disease. However, SLC-related genes (SLCs) has not been extensively studied in acute myocardial infarction (AMI). The GSE66360 and GSE60993 datasets, and SLCs geneset were enrolled in this study. Differentially expressed SLCs (DE-SLCs) were screened by overlapping DEGs between the AMI and control groups and SLCs. Next, functional enrichment analysis was carried out to research the function of DE-SLCs. Consistent clustering of samples from the GSE66360 dataset was accomplished based on DE-SLCs selected. Next, the gene set enrichment analysis (GSEA) was performed on the DEGs-cluster (cluster 1 vs cluster 2). Three machine learning models were performed to obtain key genes. Subsequently, biomarkers were obtained through receiver operating characteristic (ROC) curves and expression analysis. Then, the immune infiltration analysis was performed. Afterwards, single-gene GSEA was carried out, and the biomarker-drug network was established. Finally, quantitative real-time fluorescence PCR (qRT-PCR) was performed to verify the expression levels of biomarkers. In this study, 13 DE-SLCs were filtered by overlapping 366 SLCs and 448 DEGs. The functional enrichment results indicated that the genes were implicated with amino acid transport and TNF signaling pathway. After the consistency clustering analysis, the samples were classified into cluster 1 and cluster 2 subtypes. The functional enrichment results showed that DEGs-cluster were implicated with chemokine signaling pathway and so on. Further, SLC11A1 and SLC2A3 were identified as SLC-related biomarkers, which had the strongest negative relationship with resting memory CD4 T cells and the strongest positive association with activated mast cells. In addition, the single-gene GSEA results showed that cytosolic ribosome was enriched by the biomarkers. Five drugs targeting SLC2A3 were predicted as well. Lastly, the experimental results showed that the biomarkers expression trends were consistent with public database. In this study, 2 SLC-related biomarkers (SLC11A1 and SLC2A3) were screened and drug predictions were carried out to explore the prediction and treatment of AMI.


Subject(s)
Myocardial Infarction , Humans , Biomarkers , Myocardial Infarction/genetics , Myocardial Infarction/metabolism
2.
Acta Biochim Pol ; 70(4): 891-897, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019504

ABSTRACT

Diabetic nephropathy (DN), a microvascular complication of diabetes, increases the risk of all-cause diabetes and cardiovascular mortalities. Moreover, oxidative stress and pyroptosis play important roles in the pathogenesis of DN. Rhubarb is widely used in traditional medicine, and chrysophanol (Chr), a free anthraquinone compound abundant in rhubarb, exhibits potent antioxidant properties and ameliorates renal fibrosis. Therefore, this study aimed to investigate the effects of Chr on renal injury, oxidative stress, and pyroptosis in mice with DN. A DN model was established by feeding the mice a high-sugar and fat diet and injecting them with 50 mg/kg streptozotocin as a positive control. The DN mice had significantly impaired renal function, thickened glomerular thylakoids and basement membranes, increased fibrous tissue, and inflammatory cell infiltration. Superoxide dismutase (SOD) levels were reduced, malondialdehyde (MDA) levels were increased, interleukin (IL)-1ß and IL-18 increased, and cleaved caspase-1, caspase-1, and gasdermin D (GSDMD) involved in the process of pyroptosis were upregulated in DN. Kelch-like ECH-associated protein 1 (Keap1) expression was upregulated, and nuclear factor erythroid 2-related factor 2 (Nrf2) expression was downregulated. Compared to those in the DN group, the Chr-treated mice with DN had improved renal dysfunction, weakened glomerular thylakoid and basement membrane thickening, and reduced fibrous tissue proliferation and inflammatory cell infiltration. Additionally, Chr increased SOD levels, decreased MDA, IL-1ß, and IL-18, down-regulated caspase-1, cleaved caspase-1, GSDMD, and Keap1 expression, and upregulated Nrf2 expression, which reversed the DN. Therefore, Chr reduced oxidative stress and pyroptosis in DNmice by activating the Keap1/Nrf2 pathway.


Subject(s)
Diabetic Nephropathies , Signal Transduction , Animals , Mice , Anthraquinones/pharmacology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Interleukin-18 , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Pyroptosis/drug effects , Signal Transduction/drug effects , Superoxide Dismutase/metabolism
3.
Ren Fail ; 45(2): 2255686, 2023.
Article in English | MEDLINE | ID: mdl-37732398

ABSTRACT

BACKGROUND: Heart failure (HF) in patients undergoing maintenance hemodialysis (MHD) increases their hospitalization rates, mortality, and economic burden significantly. We aimed to develop and validate a predictive model utilizing contemporary deep phenotyping for individual risk assessment of all-cause mortality or HF hospitalization in patients on MHD. MATERIALS AND METHODS: A retrospective review was conducted from January 2017 to October 2022, including 348 patients receiving MHD from four centers. The variables were adjusted by Cox regression analysis, and the clinical prediction model was constructed and verified. RESULTS: The median follow-up durations were 14 months (interquartile range [IQR] 9-21) for the modeling set and 14 months (9-20) for the validation set. The composite outcome occurred in 72 (29.63%) of 243 patients in the modeling set and 39 (37.14%) of 105 patients in the validation set. The model predictors included age, albumin, history of cerebral hemorrhage, use of angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers/"sacubitril/valsartan", left ventricular ejection fraction, urea reduction ratio, N-terminal prohormone of brain natriuretic peptide, and right atrial size. The C-index was 0.834 (95% CI 0.784-0.883) for the modeling set and 0.853 (0.798, 0.908) for the validation set. The model exhibited excellent calibration across the complete risk profile, and the decision curve analysis (DCA) suggested its ability to maximize patient benefits. CONCLUSION: The developed prediction model offered an accurate and personalized assessment of HF hospitalization risk and all-cause mortality in patients with MHD. It can be employed to identify high-risk patients and guide treatment and follow-up.


Subject(s)
Heart Failure , Models, Statistical , Humans , Stroke Volume , Prognosis , Ventricular Function, Left , Heart Failure/therapy , Renal Dialysis , Angiotensin Receptor Antagonists , Hospitalization
4.
J Geogr Syst ; 24(3): 389-417, 2022.
Article in English | MEDLINE | ID: mdl-35463848

ABSTRACT

We are able to collect vast quantities of spatiotemporal data due to recent technological advances. Exploratory space-time data analysis approaches can facilitate the detection of patterns and formation of hypotheses about their driving processes. However, geographic patterns of social phenomena like crime or disease are driven by the underlying population. This research aims for incorporating temporal population dynamics into spatial analysis, a key omission of previous methods. As population data are becoming available at finer spatial and temporal granularity, we are increasingly able to capture the dynamic patterns of human activity. In this paper, we modify the space-time kernel density estimation method by accounting for spatially and temporally dynamic background populations (ST-DB), assess the benefits of considering the temporal dimension and finally, compare ST-DB to its purely spatial counterpart. We delineate clusters and compare them, as well as their significance, across multiple parameter configurations. We apply ST-DB to an outbreak of dengue fever in Cali, Colombia during 2010-2011. Our results show that incorporating the temporal dimension improves our ability to delineate significant clusters. This study addresses an urgent need in the spatiotemporal analysis literature by using population data at high spatial and temporal resolutions.

5.
Sci Total Environ ; 782: 146749, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33838367

ABSTRACT

The COVID-19 pandemic has been a source of ongoing challenges and presents an increased risk of illness in group environments, including jails, long-term care facilities, schools, and residential college campuses. Early reports that the SARS-CoV-2 virus was detectable in wastewater in advance of confirmed cases sparked widespread interest in wastewater-based epidemiology (WBE) as a tool for mitigation of COVID-19 outbreaks. One hypothesis was that wastewater surveillance might provide a cost-effective alternative to other more expensive approaches such as pooled and random testing of groups. In this paper, we report the outcomes of a wastewater surveillance pilot program at the University of North Carolina at Charlotte, a large urban university with a substantial population of students living in on-campus dormitories. Surveillance was conducted at the building level on a thrice-weekly schedule throughout the university's fall residential semester. In multiple cases, wastewater surveillance enabled the identification of asymptomatic COVID-19 cases that were not detected by other components of the campus monitoring program, which also included in-house contact tracing, symptomatic testing, scheduled testing of student athletes, and daily symptom reporting. In the context of all cluster events reported to the University community during the fall semester, wastewater-based testing events resulted in the identification of smaller clusters than were reported in other types of cluster events. Wastewater surveillance was able to detect single asymptomatic individuals in dorms with resident populations of 150-200. While the strategy described was developed for COVID-19, it is likely to be applicable to mitigation of future pandemics in universities and other group-living environments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Universities , Wastewater
6.
Sci Rep ; 8(1): 17140, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30459396

ABSTRACT

Urbanization modifies landscape structure in three major ways that impact avian diversity in remnant habitat: habitat amount is reduced and habitat configuration and matrix quality are altered. The relative effects of these three components of landscape structure are relatively well-studied in agricultural landscapes, but little is known about the relative effect of urban matrix quality. We addressed this gap by investigating the relative effects of forest amount, forest configuration, and matrix quality, indicated by degree of urbanization and agriculture amount, on the diversity of three guilds of forest birds using data from 13,763 point counts from Pennsylvania, USA. Forest amount had the largest independent effect on forest bird diversity, followed by matrix quality, then forest configuration. In particular, urbanization had strong negative effects on the relative abundance and species evenness of all forest birds and the relative abundance of forest generalist birds. To our knowledge, these are the first results of the effect of urban matrix quality on forest bird relative abundance and species evenness independent of forest amount and forest configuration. Our results imply that conservation practitioners in human-modified landscapes prioritize maximizing forest amount, then reducing the effects of disturbances originating in the matrix, and then preserving large, spatially-dispersed forest patches to most effectively conserve forest birds.


Subject(s)
Birds/physiology , Forests , Agriculture , Animals , Biodiversity , Ecosystem , Pennsylvania , Reproduction , Urbanization
7.
Article in English | MEDLINE | ID: mdl-28754029

ABSTRACT

Exploration of land use and land cover change (LULCC) and its impacts on ecosystem services in Tibetan plateau is valuable for landscape and environmental conservation. In this study, we conduct spatial analysis on empirical land use and land cover data in the Qinghai Lake region for 1990, 2000, and 2010 and simulate land cover patterns for 2020. We then evaluate the impacts of LULCC on ecosystem service value (ESV), and analyze the sensitivity of ESV to LULCC to identify the ecologically sensitive area. Our results indicate that, from 1990 to 2010, the area of forest and grassland increased while the area of unused land decreased. Simulation results suggest that the area of grassland and forest will continue to increase and the area of cropland and unused land will decrease for 2010-2020. The ESV in the study area increased from 694.50 billion Yuan in 1990 to 714.28 billion Yuan in 2000, and to 696.72 billion Yuan in 2020. Hydrology regulation and waste treatment are the top two ecosystem services in this region. The towns surrounding the Qinghai Lake have high ESVs, especially in the north of the Qinghai Lake. The towns with high ESV sensitivity to LULCC are located in the northwest, while the towns in the north of the Qinghai Lake experienced substantial increase in sensitivity index from 2000-2010 to 2010-2020, especially for three regulation services and aesthetic landscape provision services.


Subject(s)
Conservation of Natural Resources , Forests , Grassland , Lakes , China
8.
Spat Spatiotemporal Epidemiol ; 19: 10-20, 2016 11.
Article in English | MEDLINE | ID: mdl-27839573

ABSTRACT

Infectious diseases have complex transmission cycles, and effective public health responses require the ability to monitor outbreaks in a timely manner. Space-time statistics facilitate the discovery of disease dynamics including rate of spread and seasonal cyclic patterns, but are computationally demanding, especially for datasets of increasing size, diversity and availability. High-performance computing reduces the effort required to identify these patterns, however heterogeneity in the data must be accounted for. We develop an adaptive space-time domain decomposition approach for parallel computation of the space-time kernel density. We apply our methodology to individual reported dengue cases from 2010 to 2011 in the city of Cali, Colombia. The parallel implementation reaches significant speedup compared to sequential counterparts. Density values are visualized in an interactive 3D environment, which facilitates the identification and communication of uneven space-time distribution of disease events. Our framework has the potential to enhance the timely monitoring of infectious diseases.


Subject(s)
Dengue/epidemiology , Disease Outbreaks , Colombia/epidemiology , Dengue/prevention & control , Dengue/transmission , Humans , Mathematical Computing , Spatio-Temporal Analysis
9.
Int J Environ Res Public Health ; 12(11): 14192-215, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26569270

ABSTRACT

Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.


Subject(s)
Ecology/methods , Environment , Models, Theoretical , Biodiversity , China , Cities , Computer Simulation , Conservation of Natural Resources , Ecosystem , Geographic Information Systems , Humans , Risk , Risk Assessment/methods
10.
Ecol Lett ; 16(10): 1316-29, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23953128

ABSTRACT

Memory is critical to understanding animal movement but has proven challenging to study. Advances in animal tracking technology, theoretical movement models and cognitive sciences have facilitated research in each of these fields, but also created a need for synthetic examination of the linkages between memory and animal movement. Here, we draw together research from several disciplines to understand the relationship between animal memory and movement processes. First, we frame the problem in terms of the characteristics, costs and benefits of memory as outlined in psychology and neuroscience. Next, we provide an overview of the theories and conceptual frameworks that have emerged from behavioural ecology and animal cognition. Third, we turn to movement ecology and summarise recent, rapid developments in the types and quantities of available movement data, and in the statistical measures applicable to such data. Fourth, we discuss the advantages and interrelationships of diverse modelling approaches that have been used to explore the memory-movement interface. Finally, we outline key research challenges for the memory and movement communities, focusing on data needs and mathematical and computational challenges. We conclude with a roadmap for future work in this area, outlining axes along which focused research should yield rapid progress.


Subject(s)
Animal Migration , Memory , Models, Biological , Animals , Behavior, Animal , Biological Evolution , Research/trends
11.
Landsc Ecol ; 24(4): 557-575, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-21399748

ABSTRACT

The simulation of rural land use systems, in general, and rural settlement dynamics in particular has developed with synergies of theory and methods for decades. Three current issues are: linking spatial patterns and processes, representing hierarchical relations across scales, and considering nonlinearity to address complex non-stationary settlement dynamics. We present a hierarchical simulation model to investigate complex rural settlement dynamics in Nang Rong, Thailand. This simulation uses sub-models to allocate new villages at three spatial scales. Regional and sub-regional models, which involve a nonlinear space-time autoregressive model implemented in a neural network approach, determine the number of new villages to be established. A dynamic village niche model, establishing pattern-process link, was designed to enable the allocation of villages into specific locations. Spatiotemporal variability in model performance indicates the pattern of village location changes as a settlement frontier advances from rice-growing lowlands to higher elevations. Experiments results demonstrate this simulation model can enhance our understanding of settlement development in Nang Rong and thus gain insight into complex land use systems in this area.

SELECTION OF CITATIONS
SEARCH DETAIL
...