Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 14(1): 46, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30755227

ABSTRACT

BACKGROUND: Lumbar spinal stenosis, often accompanied by degenerative spondylolisthesis, is one of the most common conditions in the elderly. Decompression and fusion is a well-accepted treatment for single-segment lumbar spinal stenosis with degenerative spondylolisthesis; however, the treatment for multi-segment lumbar spinal stenosis with single-segment degenerative spondylolisthesis (MLSS) remains controversial. The objective of this study is to compare the effectiveness of selective decompression and fusion to multi-segmental decompression and fusion for MLSS. METHODS: A total of 42 patients suffering from MLSS who underwent surgery between June 2012 and January 2015 were included in this analysis. Of the 42 patients with minimum 3-year follow-up, 22 underwent selective decompression and fusion, and 20 patients underwent multi-segmental decompression and fusion. Age, gender, symptom duration, operative time, blood loss, the number of decompressed segment and fused segment, and complication were compared between the two groups. The visual analog scale (VAS), Oswestry Disability Index (ODI) and Short Form 36 (SF-36) were used to assess efficacy. RESULTS: Operative time, blood loss, and the number of fused segment in multi-segmental decompression and fusion group were greater than those in selective decompression and fusion group (P < 0.01). The VAS, ODI, and SF-36 scores at 1-year follow-up and 3-year follow-up were significantly improved compared with those preoperatively in both groups (P < 0.01) but were not significantly different between the two groups at each time point (P > 0.05). There was no iatrogenic spinal instability in the decompressed segments in selective decompression and fusion group, while three patients developed postoperative instability at the adjacent segments above the fused segments in multi-segmental decompression and fusion group at 3-year follow-up. CONCLUSIONS: Selective decompression and fusion is a safe and effective method for the treatment of MLSS, with the advantages of shorter operative time, less blood loss, and more preservation of spinal motion segments when compared with multi-segmental decompression and fusion.


Subject(s)
Decompression, Surgical/methods , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Spinal Stenosis/surgery , Spondylolisthesis/surgery , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Spinal Stenosis/complications , Spondylolisthesis/etiology
2.
Drug Des Devel Ther ; 10: 571-83, 2016.
Article in English | MEDLINE | ID: mdl-26966351

ABSTRACT

Chondrosarcoma is the second most common type of primary bone malignancy in the United States after osteosarcoma. Surgical resections of these tumors are the only effective treatment to chondrosarcoma patients due to their resistance to conventional chemo- and radiotherapy. In this study, miR-125b was found to perform its tumor-suppressor function to inhibit glucose metabolism via the direct targeting of oncogene, ErbB2. We report miR-125b was downregulated in both chondrosarcoma patient samples and cell lines. The total 20 Asian chondrosarcoma patients showed significantly downregulated miR-125b expression compared with normal tissues. Meanwhile, miR-125 was downregulated in chondrosarcoma cells and doxorubicin resistant cells. Overexpression of miR-125 enhanced the sensitivity of both parental and doxorubicin resistant cells to doxorubicin through direct targeting on the ErbB2-mediated upregulation of glycolysis in chondrosarcoma cells. Moreover, restoration of the expression of ErbB2 and glucose metabolic enzymes in miR-125 pretransfected cells recovered the susceptibility to doxorubicin. Our study will provide a novel aspect on the overcoming chemoresistance in human chondrosarcoma cells and may help in the development of therapeutic strategies for the treatments of patients.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Bone Neoplasms/drug therapy , Chondrosarcoma/drug therapy , Doxorubicin/pharmacology , Genes, Tumor Suppressor/physiology , Glucose/metabolism , MicroRNAs/physiology , Receptor, ErbB-2/physiology , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Humans , Receptor, ErbB-2/genetics
3.
Neurosci Lett ; 578: 95-9, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24993297

ABSTRACT

BDNF has a widespread distribution in the central and peripheral nervous systems, suggesting that BDNF may play a role in the regulation of motor control. However, the direct actions of BDNF on the motoneurons and their underlying mechanisms are still largely unknown to date. Therefore, by using whole-cell patch clamp recordings, quantitative RT-PCR and immunocytochemistry, the present study was designed to investigate the effects of BDNF on electrical activity and glycinergic transmission on the motoneurons and the underlying receptor mechanism. The results reveal: (i) BDNF did not produce a direct excitatory or inhibitory effect on the motoneurons; (ii) BDNF dose-dependently increased the glycinergic transmission on the motoneurons; (iii) glycinergic transmission on motoneurons was a direct postsynaptic effect; (iv) BDNF-induced enhancement of the glycinergic transmission was mediated by the activation of TrkB receptors; and (v) BDNF and its receptors TrkB had an extensive expression in the motoneurons. These results suggest that BDNF is directly involved in the regulation of glycinergic transmission on the motoneurons through postsynaptic TrkB receptors. Considering that the glycinergic synaptic transmission of motoneurons mainly comes from Renshaw cells, the important inhibitory interneurons of spinal cord, we speculate that BDNF may play an important role in the information integration in the spinal cord and participate in the sensitivity of motoneurons.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Glycine/metabolism , Motor Neurons/physiology , Spinal Cord/physiology , Synaptic Transmission , Animals , Brain-Derived Neurotrophic Factor/pharmacology , Female , Glycine/pharmacology , Male , Motor Neurons/drug effects , Rats , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Spinal Cord/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...