Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(36)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38749414

ABSTRACT

Multi-photon reduction (MPR) based on femtosecond laser makes rapid prototyping and molding in micro-nano scale feasible, but is limited in material selectivity due to lack of the understanding of the reaction mechanism in MPR process. In this paper, additively manufacturing of complex silver-based patterns through MPR is demonstrated. The effects of laser parameters, including laser pulse energies and scanning speeds, on the structural and chemical characteristics of the printed structures are systematically investigated. The results show that the geometric size of printed cubes deviates from the designed size further by increasing laser pulse energy or decreasing scanning speed. The reaction mechanism of MPR is revealed by studying the elemental composition and chemical structures of printed cubes. The evolution of Raman spectra upon the laser processing parameters suggests that the MPR process mainly includes two processes: reduction and decomposition. In the MPR process, silver ions are reduced and grow into particles by accepting the electrons from ethonal molecules; meanwhile carboxyl groups in polyvinylpyrrolidone are decomposed and form amorphous carbon that is attached on the surface of silver particles. The conductivity of silver wires fabricated by MPR reaches 2 × 105S m-1and stays relatively constant as varying their cross section area, suggesting excellent electrical conduction. The understanding of the MPR process would accelerate the development of MPR technology and the implementation of MPR in micro-electromechanical systems could therefore be envisioned.

2.
Anim Biotechnol ; : 1-13, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36520026

ABSTRACT

While restricting nutrition can improve diseases related to the digestive tract, excessive restriction of food intake can also lead to malnutrition and delayed physical growth. Therefore, this brings the demand to study the effect and potential mechanism of restricted feeding on skeletal muscle development in rabbits. This study utilized hematoxylin-eosin (HE) staining to detect muscle fiber area which depicted significant reduction in skeletal muscle fiber upon 30% feed restriction (p < 0.05). The control group and 30% feed restricted group showed 615 deferentially expressed genes (DEGs). Through the GO and KEGG functional enrichment analysis demonstrated 28 DEGs related to muscle development. KEGG analysis showed enrichment of pathways including PI3K/Akt signaling pathway, MAPK signaling pathway, and Hedgehog signaling pathway. Further, the full length of troponin I1, slow skeletal type (TNNI1) was cloned. We studied the expression of skeletal muscle differentiation-related genes such as MyoD, Myf5 gene and Desmin. Specifically, the TNNI1 gene overexpression and knockdown studies were conducted. The over-expression of TNNI1 significantly enhanced the expression of the skeletal muscle development-related genes. Contrastingly, the silencing of TNNI1 gene reduced the expression significantly. These findings showed that TNNI1 may be a regulator for regulating the expression of muscle development-related genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...