Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 490
Filter
1.
Food Chem ; 458: 139422, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38959797

ABSTRACT

The lipids and volatile compounds in pork from different parts, including the loin, belly, shoulder and hind leg were analyzed by triple quadrupole tandem time-of-flight mass spectrometer (Q-TOF/MS) and gas chromatography-olfactometry-mass spectrometry (GC-O-MS), respectively. Partial least squares regression (PLSR) and Pearson correlation analysis were utilized to establish the relationship between the lipids and volatile compounds. A total of 8 main flavour substances, 38 main phospholipids, and 32 main fatty acids were identified. The results showed that the key flavour compounds were mainly derived from unsaturated fatty acids and phospholipids containing unsaturated fatty acids, including oleic acid (C18:2n6c), α-Linolenic acid (C18:3n3), arachidonic acid (C20:4n6), PE O (18:1/20:4), PE O (18:2/20:4), and PE O (18:2/18:2), etc. Understanding the relationship between flavour compounds and lipids of pork will be helpful to control the quality of pork.

2.
J Hazard Mater ; 476: 135139, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981230

ABSTRACT

Neonicotinoids pose significant environmental risks due to their widespread use, persistence, and challenges in elimination. This study explores the effectiveness of Fe/Mn biochar in enhancing the removal efficiency of neonicotinoids in recirculating constructed wetlands (RCWs). Results demonstrated that incorporating Fe/Mn biochar into RCWs significantly improved the removal of COD, NH4+-N, TN, TP, imidacloprid (IMI), and acetamiprid (ACE). However, the simultaneous presence of IMI and ACE in the RCWs hindered the elimination of NH4+-N, TN, and TP from wastewater. The enhanced removal of nutrients and pollutants by Fe/Mn biochar was attributed to its promotion of carbon, nitrogen, and phosphorus cycling in RCWs, along with its facilitation of the adsorption and biodegradation of IMI and ACE. Metagenomics analysis demonstrated that Fe/Mn biochar altered the structure and diversity of microbial communities in RCWs. A total of 17 biodegradation genes (BDGs) and two pesticide degradation genes (PDGs) were identified within RCWs, with Fe/Mn biochar significantly increasing the abundance of BDGs such as cytochrome P450. The potential host genera for these BDGs/PDGs were identified as Betaproteobacteria, Acidobacteria, Nitrospiraceae, Gemmatimonadetes, and Bacillus. This study offers valuable insights into how Fe/Mn biochar enhances pesticide removal and its potential application in constructed wetland systems for treating pesticide-contaminated wastewater.

3.
Hematology ; 29(1): 2377850, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39012217

ABSTRACT

BACKGROUND: TP53 gene mutation is crucial in determining the prognosis of Multiple Myeloma (MM) patients. Understanding metabolic genes linked to TP53 mutation is vital for developing targeted therapies for these patients. METHOD: We analyzed The Cancer Genome Atlas (TCGA) dataset to identify genes related to TP53 mutation and metabolism. Using univariate Cox regression and protein-protein interaction (PPI) analysis, we identified key genes. We categorized patients into high and low metabolism groups via non-negative matrix factorization (NMF) clustering, which led to the discovery of relevant differential genes. Integrating these with genes from the Gene Expression Omnibus (GEO) datasets and PPI interactions, we pinpointed crucial metabolic genes associated with TP53 mutation in MM. Additionally, we conducted prognostic analyses involving survival curves and receiver operating characteristic (ROC) charts. RESULTS: Our study reveals that the metabolic gene ribonucleotide reductase M2 (RRM2), linked to TP53 mutation, correlates positively with the International Staging System (ISS) stage in MM patients and is an independent prognostic risk factor. In the TCGA dataset, among the 767 patients, the 35 MM patients with TP53 mutation generally had poor survival outcomes. Specifically, the patients with both TP53 mutation and high RRM2 expression had a 2-year survival rate of only 38.87%, whereas those with normal TP53 function and low RRM2 expression had a 2-year survival rate of 86.31% (p < 0.001). CONCLUSION: RRM2 significantly impacts MM prognosis and is associated with TP53 mutation, presenting itself as a potential therapeutic target and prognostic marker for MM.


Subject(s)
Multiple Myeloma , Mutation , Tumor Suppressor Protein p53 , Humans , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Tumor Suppressor Protein p53/genetics , Prognosis , Female , Male , Ribonucleoside Diphosphate Reductase/genetics , Middle Aged , Gene Expression Regulation, Neoplastic
4.
Dalton Trans ; 53(25): 10416-10420, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38856195

ABSTRACT

A hydrogen-bonded three-dimensional porous metal-organic framework [Mg(H2PCD)2(H2O)2]·2H2O (denoted as Mg-MOF·2H2O; H3PCD = 9-(2-(ethoxy(hydroxy)phosphonyl)ethyl)-9H-carbazole-3,6-dicarboxylic acid) was synthesized by the reactions of H3PCD and Mg(II) under solvothermal conditions. The free carboxylate group was maintained in the pore surface by adjusting the acidic reaction conditions. The highly stable Mg-MOF exhibits excellent performance for lead(II) sensing and removal from aqueous solutions.

5.
Respir Res ; 25(1): 254, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907347

ABSTRACT

Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untargeted metabolomics to analyze the metabolic profiles of 107 plasma samples from healthy controls and newly diagnosed TB patients who either developed ATB-DILI within 2 months of anti-TB treatment (ATB-DILI subjects) or completed their treatment without any adverse drug reaction (ATB-Ctrl subjects). The untargeted metabolome revealed that 77 metabolites (of 895 total) were significantly changed with ATB-DILI progression. Among them, levels of multiple fatty acids and bile acids significantly increased over time in ATB-DILI subjects. Meanwhile, metabolites of the same class were highly correlated with each other and pathway analysis indicated both fatty acids metabolism and bile acids metabolism were up-regulated with ATB-DILI progression. The targeted metabolome further validated that 5 fatty acids had prediction capability at the early stage of the disease and 6 bile acids had a better diagnostic performance when ATB-DILI occurred. These findings provide evidence indicating that fatty acids metabolism and bile acids metabolism play a vital role during ATB-DILI progression. Our report adds a dynamic perspective better to understand the pathological process of ATB-DILI in clinical settings.


Subject(s)
Antitubercular Agents , Biomarkers , Chemical and Drug Induced Liver Injury , Metabolomics , Humans , Antitubercular Agents/adverse effects , Male , Metabolomics/methods , Female , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/metabolism , Longitudinal Studies , Adult , Middle Aged , Biomarkers/blood , Prospective Studies , Predictive Value of Tests , Tuberculosis/drug therapy , Tuberculosis/blood , Tuberculosis/metabolism , Bile Acids and Salts/blood , Bile Acids and Salts/metabolism
6.
Langmuir ; 40(21): 11329-11339, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748512

ABSTRACT

The current membrane materials used for oil-water separation suffer from low separation efficiency and poor durability, and membrane contamination is also a key issue that must be addressed urgently. In this paper, a superhydrophilic PANI/Ag/TA@PVDF composite membrane with PANI-Ag NPs heterojunction structure was prepared via chelation and reduction of Ag+ by tannic acid (TA) and in situ growth of hydrochloric acid-doped polyaniline (PANI). TA endows the prepared composite membrane with excellent superhydrophilicity and underwater oleophobicity, remarkable oil-water separation capacity (the separation efficiency of more than 97% for soybean oil), and extraordinary antifouling properties. Notably, the range of photodegradation is expanded from UV to visible light by the construction of a Schottky heterostructure between PANI and Ag NPs, the photocatalytic degradation ability of composite membrane for organic pollutants has been improved obviously, and the degradation efficiency for crystal violet (CV) is 97.9%. Considering these merits, the PANI/Ag/TA@PVDF composite membrane provides an effective strategy to overcome the shortcomings of existing membrane materials, presenting enormous potential in the treatment and purification of oily wastewater.

7.
World J Gastrointest Oncol ; 16(5): 1773-1786, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764839

ABSTRACT

BACKGROUND: The TRIANGLE operation involves the removal of all tissues within the triangle bounded by the portal vein-superior mesenteric vein, celiac axis-common hepatic artery, and superior mesenteric artery to improve patient prognosis. Although previously promising in patients with locally advanced pancreatic ductal adenocarcinoma (PDAC), data are limited regarding the long-term oncological outcomes of the TRIANGLE operation among resectable PDAC patients undergoing pancreaticoduodenectomy (PD). AIM: To evaluate the safety of the TRIANGLE operation during PD and the prognosis in patients with resectable PDAC. METHODS: This retrospective cohort study included patients who underwent PD for pancreatic head cancer between January 2017 and April 2023, with or without the TRIANGLE operation. Patients were divided into the PDTRIANGLE and PDnon-TRIANGLE groups. Surgical and survival outcomes were compared between the two groups. Adequate adjuvant chemotherapy was defined as adjuvant chemotherapy ≥ 6 months. RESULTS: The PDTRIANGLE and PDnon-TRIANGLE groups included 52 and 55 patients, respectively. There were no significant differences in the baseline characteristics or perioperative indexes between the two groups. Furthermore, the recurrence rate was lower in the PDTRIANGLE group than in the PDnon-TRIANGLE group (48.1% vs 81.8%, P < 0.001), and the local recurrence rate of PDAC decreased from 37.8% to 16.0%. Multivariate Cox regression analysis revealed that PDTRIANGLE (HR = 0.424; 95%CI: 0.256-0.702; P = 0.001), adequate adjuvant chemotherapy ≥ 6 months (HR = 0.370; 95%CI: 0.222-0.618; P < 0.001) and margin status (HR = 2.255; 95%CI: 1.252-4.064; P = 0.007) were found to be independent factors for the recurrence rate. CONCLUSION: The TRIANGLE operation is safe for PDAC patients undergoing PD. Moreover, it reduces the local recurrence rate of PDAC and may improve survival in patients who receive adequate adjuvant chemotherapy.

8.
Int J Phytoremediation ; : 1-11, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780520

ABSTRACT

Moso bamboo is excellent candidate for cadmium (Cd)/lead (Pb) phytoremediation, while rhizosphere microbiome has significant impact on phytoremediation efficiency of host plant. However, little is known about the rhizosphere bacterial communities of moso bamboo in Cd/Pb contaminated soils. Therefore, this study investigated the assembly patterns and key taxa of rhizosphere bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils, by field sampling, chemical analysis, and 16S rRNA gene sequencing. The results indicated α-diversity between Cd/Pb polluted and unpolluted soils showed a similar pattern (p > 0.05), while ß-diversity was significantly different (p < 0.05). The relative abundance analysis indicated α-proteobacteria (37%) and actinobacteria (31%) were dominant in Cd/Pb polluted soils, while γ-proteobacteria (40%) and α-proteobacteria (22%) were dominant in unpolluted soils. Co-occurrence network analysis indicated microbial networks were less complex and more negative in polluted soils than in unpolluted soils. Mantel analysis indicated soil available phosphorus, organic matter, and available Pb were the most important environmental factors affecting microbial community structure. Correlation analysis showed 11 bacterial genera were significantly positively related to Cd/Pb. Overall, this study identified the bacterial community composition of bamboo rhizosphere in responding to Cd/Pb contamination and provides a theoretical basis for microbe-assistant phytoremediation in the future.


To date, little is known about the bacterial communities in the rhizosphere of moso bamboo under Cd and Pb multiple stresses. This study investigated the assembly patterns and key taxa of rhizospheric bacterial communities of moso bamboo in Cd/Pb polluted and unpolluted soils. It was found that the bacterial community structure in bamboo rhizosphere is easily influenced by soil chemical environment, such as fertilities and heavy metals. The key bacterial taxa identified here could be target microbe in future microbe-assistant phytoremediation.

9.
Mol Breed ; 44(5): 33, 2024 May.
Article in English | MEDLINE | ID: mdl-38694254

ABSTRACT

Hybrid seed production technology (SPT) is achieved through the utilization of a recessive nuclear male-sterile mutant transformed with a transgenic cassette comprising three essential components: the wild-type gene to restore the fertility of the male-sterile mutant, an α-amylase gene to disrupt transgenic pollen grains, and red fluorescence protein gene DsRed to distinguish the transgenic seeds from the nontransgenic male sterile seeds. In rice, we establish the pollen disruption system by introducing an amyloplast targeting signal peptide (ASP) at the N-terminus of maize α-amylase protein ZM-AA1ΔSP (ZM-AA1 with the N-terminal signal peptide removed). The ASP facilitates the transport of ZM-AA1ΔSP protein into amyloplast where it degrades starch, resulting in disruption of the pollen fertility. To obtain such signal peptides for rice, we searched the rice proteins homologous to the defined wheat amyloplast proteins followed by protein-protein interaction network predictions and targeting signal peptides prediction. These analyses enabled the identification of four candidate ASPs in rice, which were designated as ASP1, ASP2, ASP3, and ASP4, respectively. ASP1 and ASP2, when linked with ZM-AA1ΔSP, exhibited the capability to disrupt transgenic pollen grains, whereas ASP3 and ASP4 did not produce this effect. Interestingly, the localization experiments showed that ASP3 and ASP4 were able to target the proteins into chloroplast. The ASP1 and ASP2 sequences provide valuable tools for genetic engineering of the rice male-sterile system, which will contribute to the hybrid rice breeding and production. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01471-y.

10.
Environ Res ; 252(Pt 3): 119053, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714223

ABSTRACT

Water treatment is one of the most important issues for all walks of life around the world. The unique advantages of the solid-state power electronic pulses in water treatment make it attractive and promising in practical applications. The output voltage, rising time, repetition rate, and peak power of output pulses have a significant impact on the effectiveness of water treatment. Especially in pulse electric field treatment and pulse discharge treatment, the pulse with fast rising time achieves the advantage of generating plasma without corona, which can avoid water heating effect and greatly improve the efficiency of the pulse generator. High repetition rate can significantly reduce the peak power requirement of the pulse in water treatment application, making the equipment smaller and improving the power density. Therefore, the study developed a high-voltage high frequency sub-nanosecond pulse power generator (PPG) system for wastewater treatment. It adopts SiC DSRD (Drift Step Recovery Diode) solid-state switches and realize modular design, which can achieve high performance and can be flexible expanded according to the requirements of water treatment capacity. Finally, an expandable high-voltage PPG for water treatment is built. The output parameters of the PPG include output pulse voltage range from 1 to 5.28 kV, rise time <600 ps (20%-90%), repetition up to 1 MHz. The experiment results of PPG application for pulse discharge water treatment is presented. The results indicate that the proposed generator achieves high-efficiency degradation of 4-Chlorophenol (4-CP), which is one of the most common chlorophenol compounds in wastewater. From experiment, the homemade system can degrade 450 mL waste water containing 500 mg/L 4-CP in 35 min, with a degradation rate of 98%. Thereby, the requirement for electric field intensity decreased. Through the further quantitative analysis, the impact of frequency, voltage, and electrode spacing on the degradation effect of 4-CP is confirmed.


Subject(s)
Water Purification , Water Purification/methods , Water Purification/instrumentation , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Waste Disposal, Fluid/methods , Waste Disposal, Fluid/instrumentation , Electricity
11.
Inorg Chem ; 63(23): 10511-10518, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38768636

ABSTRACT

Selective actinide coordination (from lanthanides) is critical for both nuclear waste management and sustainable development of nuclear power. Hydrophilic ligands used as masking agents to withhold actinides in the aqueous phase are currently highly pursued, while synthetic accessibility, water solubility, acid resistance, and extraction capability are the remaining problems. Most reported hydrophilic ligands are only effective at low acidity. We recently proved that the phenanthroline diimide skeleton was an efficient building block for the construction of highly efficient acid-resistant hydrophilic lanthanide/actinide separation agents, while the limited water solubility hindered the loading capability of the ligand. Herein, amine was introduced as the terminal solubilizing group onto the phenanthroline diimide backbone, which after protonation in acid showed high water solubility. The positively charged terminal amines enhanced the ligand water solubility to a large extent, which, on the other side, was believed to be detrimental for the coordination and complexation of the metal cations. We showed that by delicately adjusting the alkyl chain spacing, this intuitive disadvantage could be relieved and superior extraction performances could be achieved. This work holds significance for both hydrophilic lanthanide/actinide separation ligand design and, concurrently, offers insights into the development of water-soluble lanthanide/actinide complexes for biomedical and bioimaging applications.

12.
Environ Monit Assess ; 196(5): 411, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564123

ABSTRACT

Spatial simulation and projection of ecosystem services value (ESV) changes caused by urban growth are important for sustainable development in arid regions. We developed a new model of cellular automata based grasshopper optimization algorithm (named GOA-CA) for simulating urban growth patterns and assessing the impacts of urban growth on ESV changes under climate change scenarios. The results show that GOA-CA yielded overall accuracy exceeding 98%, and FOM for 2010 and 2020 were 43.2% and 38.1%, respectively, indicating the effectiveness of the model. The prairie lost the highest economic ESVs (192 million USD) and the coniferous yielded the largest economic ESV increase (292 million USD) during 2000-2020. Using climate change scenarios as urban future land use demands, we projected three scenarios of the urban growth of Urumqi for 2050 and their impacts on ESV. Our model can be easily applied to simulating urban development, analyzing its impact on ESV and projecting future scenarios in global arid regions.


Subject(s)
Climate Change , Ecosystem , Environmental Monitoring , Algorithms , Desert Climate
13.
Plants (Basel) ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674501

ABSTRACT

High temperatures have adverse effects on the yield and quality of vegetables. Bok choy, a popular vegetable, shows varying resistance to heat. However, the mechanism underlying the thermotolerance of bok choy remains unclear. In this study, 26 bok choy varieties were identified in screening as being heat-resistant at the seedling stage; at 43 °C, it was possible to observe obvious heat damage in different bok choy varieties. The physiological and biochemical reactions of a heat-tolerant cultivar, Jinmei (J7), and a heat-sensitive cultivar, Sanyueman (S16), were analyzed in terms of the growth index, peroxide, and photosynthetic parameters. The results show that Jinmei has lower relative conductivity, lower peroxide content, and higher total antioxidant capacity after heat stress. We performed transcriptome analysis of the two bok choy varieties under heat stress and normal temperatures. Under heat stress, some key genes involved in sulfur metabolism, glutathione metabolism, and the ribosome pathway were found to be significantly upregulated in the heat-tolerant cultivar. The key genes of each pathway were screened according to their fold-change values. In terms of sulfur metabolism, genes related to protease activity were significantly upregulated. Glutathione synthetase (GSH2) in the glutathione metabolism pathway and the L3e, L23, and S19 genes in the ribosomal pathway were significantly upregulated in heat-stressed cultivars. These results suggest that the total antioxidant capacity and heat injury repair capacity are higher in Jinmei than in the heat-sensitive variety, which might be related to the specific upregulation of genes in certain metabolic pathways after heat stress.

14.
Angew Chem Int Ed Engl ; 63(24): e202401682, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38587230

ABSTRACT

Polyesters, a highly promising class of circular polymers for achieving a closed-loop sustainable plastic economy, inherently exhibit material stability defects, especially in thermal and hydrolytic instability. Here, we introduce a class of polyesters, P(4R-BL) (R=Ph, Bu), featuring conformationally rigid 1,3-cyclobutane rings in the backbone. These polyesters not only exhibit superior thermostability (Td,5%=376-380 °C) but also demonstrate exceptional hydrolytic resistance with good integrity even after 1 year in basic and acidic aqueous solutions, distinguishing themselves from typical counterparts. Tailoring the flexibility of the side group R enables the controlled thermal and mechanical performance of P(4Ph-BL) and P(4Bu-BL) to rival durable syndiotactic polystyrene (SPS) and low-density polyethylene (LDPE), respectively. Significantly, despite their high stability, both polyesters can be effectively depolymerized into pristine monomers, establishing a circular life cycle.

15.
Discov Oncol ; 15(1): 95, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564036

ABSTRACT

Metaplastic breast carcinoma (MBC), a category of breast cancer, includes different histological types, which are occasionally mixed and heterogeneous. Considering the heterogeneity of cancer cells in a tumour mass has become highly significant, not only from a biological aspect but also for clinical management of recurrence. This study aimed to analyse the immunohistochemical and molecular profiles of each MBC component of a tumour mass. Twenty-five MBC tumours were histologically evaluated, and the most frequent MBC component (c) was squamous cell carcinoma (SCC), followed by spindle cell carcinoma (SpCC). A total of 69 components of MBC and non-MBC in formalin-fixed paraffin-embedded sections were examined for 7 markers by immunohistochemistry. SCC(c) were significantly PTEN negative and CK14 positive, and SpCC(c) were significantly E-cadherin negative and vimentin positive. Multivariate analyses revealed that immunohistochemical profiles of normal/intraductal (IC)(c), no special type (NST)(c), and MBC(c) differed; moreover, SCC(c) and SpCC(c) were distinctly grouped. PTEN gene mutation was detected only in SCC(c) (2/7), but not in SpCC(c). Next-generation sequence analyses for 2 cases with tumours containing SCC(c) demonstrated that PTEN gene mutation increased progressively from IC(c) to NST(c) to SCC(c). In conclusion, the immunohistochemical and molecular profiles of the SCC(c) of MBC are distinct from those of the SpCC(c).

16.
Int Wound J ; 21(4): e14858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546006

ABSTRACT

Hypertension is a prevalent condition that poses significant challenges in the perioperative management of patients undergoing major non-cardiac surgery, particularly concerning wound healing and scar formation. This meta-analysis assesses the impact of long-term antihypertensive treatment on postoperative wound healing, examining data from seven studies involving patients who received such treatments compared to untreated controls. Our findings reveal that long-term antihypertensive therapy is associated with significantly improved wound healing outcomes, as indicated by lower REEDA scores (I2 = 96%, SMD = -25.71, 95% CI: [-33.71, -17.70], p < 0.01) 1 week post-surgery and reduced scar formation, demonstrated by lower Manchester Scar Scale scores (I2 = 93%, SMD = -37.29, 95% CI: [-44.93, -29.64], p < 0.01) 2 months post-surgery. These results underscore the potential benefits of antihypertensive treatment in enhancing surgical recovery and offer insights into optimising perioperative care for hypertensive patients.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Cicatrix , Antihypertensive Agents/therapeutic use , Wound Healing , Hypertension/drug therapy
17.
CNS Neurosci Ther ; 30(3): e14652, 2024 03.
Article in English | MEDLINE | ID: mdl-38433011

ABSTRACT

AIM: This study aims to elucidate the cellular dynamics and pathophysiology of white matter hemorrhage (WMH) in intracerebral hemorrhage (ICH). METHODS: Using varying doses of collagenase IV, a consistent rat ICH model characterized by pronounced WMH was established. Verification was achieved through behavioral assays, hematoma volume, and histological evaluations. Single-cell suspensions from the hemorrhaged region of the ipsilateral striatum on day three post-ICH were profiled using single-cell RNA sequencing (scRNA-seq). Gene Ontology (GO) and gene set variation analysis (GSVA) further interpreted the differentially expressed genes (DEGs). RESULTS: Following WMH induction, there was a notable increase in the percentage of myeloid cells and oligodendrocyte precursor cells (OPCs), alongside a reduction in the percentage of neurons, microglia, and oligodendrocytes (OLGs). Post-ICH WMH showed homeostatic microglia transitioning into pro-, anti-inflammatory, and proliferative states, influencing lipid metabolic pathways. Myeloid cells amplified chemokine expression, linked with ferroptosis pathways. Macrophages exhibited M1 and M2 phenotypes, and post-WMH, macrophages displayed a predominance of M2 phenotypes, characterized by their anti-inflammatory properties. A surge in OPC proliferation aligned with enhanced ribosomal signaling, suggesting potential reparative responses post-WMH. CONCLUSION: The study offers valuable insights into WMH's complex pathophysiology following ICH, highlighting the significance and utility of scRNA-seq in understanding the cellular dynamics and contributing to future cerebrovascular research.


Subject(s)
Stroke , White Matter , Animals , Rats , Stroke/complications , Cerebral Hemorrhage/genetics , Anti-Inflammatory Agents , Sequence Analysis, RNA
18.
Int J Artif Organs ; 47(3): 162-172, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450429

ABSTRACT

BACKGROUND: The hydrodynamic suspension structure design of the axial blood pump impeller can avoid the problems associated with using mechanical bearings. However, the particular impeller structure will impact the hydraulic performance and hemolysis of the blood pump. METHOD: This article combines computational fluid dynamics (CFD) with the Lagrange particle tracking method, aiming to improve the blood pump's hydraulic and hemolysis performance. It analyzes the flow characteristics and hemolysis performance inside the pump. It optimizes the taper of the impeller hub, the number of blades, and the inclination angle of the circumferential groove at the top of the blade. RESULTS: Under certain rotational speed conditions, an increase in the taper of the impeller hub or the number of blades can increase the pumping pressure of a blood pump, but an increase in the number of blades will reduce the flow rate. The design of circumferential grooves at the top of the blade can increase the pumping pressure to a certain extent, with little impact on the hemolysis performance. The impeller structure is optimized based on the estimated hemolysis of each impeller model blood pump. It could be seen that when the pump blood pressure and flow rate were reached, the optimized impeller speed was reduced by 11.4%, and the estimated hemolysis value was reduced by 10.5%. CONCLUSION: In this paper, the rotor impeller structure of the blood pump was optimized to improve the hydraulic and hemolytic performance effectively, which can provide a reference for the related research of the axial flow blood pump using hydraulic suspension.


Subject(s)
Heart-Assist Devices , Humans , Equipment Design , Hemolysis , Computer Simulation , Blood Pressure
19.
Ecotoxicol Environ Saf ; 274: 116229, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38508101

ABSTRACT

Carbon-fixing functional strain-loaded biochar may have significant potential in carbon sequestration given the global warming situation. The carbon-fixing functional strain Bacillus cereus SR was loaded onto rice straw biochar pyrolyzed at different temperatures with the anticipation of clarifying the carbon sequestration performance of this strain on biochar and the interaction effects with biochar. During the culture period, the content of dissolved organic carbon (DOC), easily oxidizable organic carbon, and microbial biomass carbon in biochar changed. This finding indicated that B. cereus SR utilized organic carbon for survival and enhanced carbon sequestration on biochar to increase organic carbon, manifested by changes in CO2 emissions and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzyme activity. Linear regression analysis showed that the strain was likely to consume DOC on 300 °C biochar, although the Rubisco enzyme activity was higher. In contrast, the strain had a higher carbon sequestration potential on 500 °C biochar. Correlation analysis showed that Rubisco enzyme activity was controlled by the physical structure of the biochar. Our results highlight the differences in the survival mode and carbon sequestration potential of B. cereus SR on biochar pyrolyzed at different temperatures.


Subject(s)
Bacillus cereus , Carbon , Carbon Sequestration , Ribulose-Bisphosphate Carboxylase , Soil/chemistry , Charcoal/chemistry , Agriculture/methods
20.
Parasit Vectors ; 17(1): 142, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500196

ABSTRACT

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown. METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed. RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite. CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.


Subject(s)
Parasites , Toxoplasma , Humans , Animals , Toxoplasma/physiology , Plant Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Indoleacetic Acids/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...