Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Article in English | MEDLINE | ID: mdl-38722288

ABSTRACT

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Subject(s)
Breast Neoplasms , Organoids , Precision Medicine , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Organoids/drug effects , Organoids/pathology , Organoids/metabolism , Precision Medicine/methods , Animals , Xenograft Model Antitumor Assays , Mice , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor/methods , Middle Aged
2.
Breast ; 76: 103738, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38685149

ABSTRACT

BACKGROUND: We assessed the potential role of serial circulating tumor DNA (ctDNA) as a biomarker to monitor treatment response to primary systemic therapy (PST) in breast cancer and evaluated the predictive value of ctDNA to further identify patients with residual disease. METHODS: We prospectively enrolled 208 plasma samples collected at three time points (before PST, after 2 cycles of treatment, before surgery) of 72 patients with stage Ⅱ-III breast cancer. Somatic mutations in plasma samples were identified using a customized 128-gene capture panel with next-generation sequencing. The correlation between early change in ctDNA levels and treatment response or long-term clinical outcomes was assessed. RESULTS: 37 of 72 (51.4%) patients harbored detectable ctDNA alterations at baseline. Patients with complete response showed a larger decrease in ctDNA levels during PST. The median relative change of variant allele fraction (VAF) was -97.4%, -46.7%, and +21.1% for patients who subsequently had a complete response (n = 11), partial response (n = 11), and no response (n = 15) (p = 0.0012), respectively. In addition, the relative change of VAF between the pretreatment and first on-treatment blood draw exhibited the optimal predictive value to tumor response after PST (area under the curve, AUC = 0.7448, p = 0.02). More importantly, early change of ctDNA levels during treatment have significant prognostic value for patients with BC, there was a significant correlation between early decrease of VAF and longer recurrence-free survival compared to those with an VAF increase (HR = 12.54; 95% CI, 2.084 to 75.42, p = 0.0063). CONCLUSION: Early changes of ctDNA are strongly correlated with therapeutic efficacy to PST and clinical outcomes in BC patients. The integration of preoperative ctDNA evaluation could help improving the perioperative management for BC patients receiving PST.

3.
Sci Rep ; 14(1): 6435, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499600

ABSTRACT

Hyperparathyroidism (HPT) manifests as a complex condition with a substantial disease burden. While advances have been made in surgical interventions and non-surgical pharmacotherapy for the management of hyperparathyroidism, radical options to halt underlying disease progression remain lacking. Identifying putative genetic drivers and exploring novel drug targets that can impede HPT progression remain critical unmet needs. A Mendelian randomization (MR) analysis was performed to uncover putative therapeutic targets implicated in hyperparathyroidism pathology. Cis-expression quantitative trait loci (cis-eQTL) data serving as genetic instrumental variables were obtained from the eQTLGen Consortium and Genotype-Tissue Expression (GTEx) portal. Hyperparathyroidism summary statistics for single nucleotide polymorphism (SNP) associations were sourced from the FinnGen study (5590 cases; 361,988 controls). Colocalization analysis was performed to determine the probability of shared causal variants underlying SNP-hyperparathyroidism and SNP-eQTL links. Five drug targets (CMKLR1, FSTL1, IGSF11, PIK3C3 and SLC40A1) showed significant causation with hyperparathyroidism in both eQTLGen and GTEx cohorts by MR analysis. Specifically, phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) and solute carrier family 40 member 1 (SLC40A1) showed strong evidence of colocalization with HPT. Multivariable MR and Phenome-Wide Association Study analyses indicated these two targets were not associated with other traits. Additionally, drug prediction analysis implies the potential of these two targets for future clinical applications. This study identifies PIK3C3 and SLC40A1 as potential genetically proxied druggable genes and promising therapeutic targets for hyperparathyroidism. Targeting PIK3C3 and SLC40A1 may offer effective novel pharmacotherapies for impeding hyperparathyroidism progression and reducing disease risk. These findings provide preliminary genetic insight into underlying drivers amenable to therapeutic manipulation, though further investigation is imperative to validate translational potential from preclinical models through clinical applications.


Subject(s)
Follistatin-Related Proteins , Hyperparathyroidism , Humans , Mendelian Randomization Analysis , Quantitative Trait Loci/genetics , Class III Phosphatidylinositol 3-Kinases , Cost of Illness , Genome-Wide Association Study
4.
Gland Surg ; 13(1): 32-44, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38323231

ABSTRACT

Background: Functional parathyroid cysts (FPCs) are rare and difficult to diagnose with noninvasive methods. The aim of this study was to evaluate the diagnostic value of 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) single-photon emission computed tomography/computerized tomography (SPECT/CT) parathyroid imaging in the diagnosis of FPCs and to account for its performance. Methods: The data from 10 patients with suspected parathyroid cysts (PCs) who underwent 99mTc-MIBI SPECT/CT parathyroid imaging between 2012 and 2022 were retrospectively evaluated. The diagnostic value of 99mTc-MIBI SPECT/CT parathyroid imaging for FPCs was analyzed. Results: Surgical resection was performed in six cases and parathyroid puncture was performed in four cases. The sensitivity of 99mTc-MIBI SPECT/CT for FPCs was 100.0% (3/3), with a specificity of 100.0% (7/7) and an accuracy of 100.0% (10/10). The postoperative pathological findings in three cases of FPCs were parathyroid adenoma, parathyroid adenoma with hemorrhage, and parathyroid adenoma with cystic degeneration, respectively. The diagnostic accuracy of ultrasound and CT for PCs was only 22.22% (2/9) and 25.0% (1/4), respectively, and neither modality could indicate whether the cysts were functional or not. Conclusions: 99mTc-MIBI parathyroid SPECT/CT imaging has a high value in the diagnosis of FPCs in patients with suspected PCs, and an intense ring-shaped accumulation of radioactivity in the cyst wall on 99mTc-MIBI imaging suggests that the patient may have FPCs.

5.
Environ Toxicol ; 39(3): 1715-1728, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050844

ABSTRACT

INTRODUCTION: Breast cancer remains the predominant cancer among females, accounting for about 24.2% of all cancer cases. Alarmingly, it is the primary cause of cancer-related mortality in women under 45. METHODS: This research analyzed RNA sequencing data from 1082 TCGA-BRCA and 107 GSE58812 breast cancer patients. Single-cell RNA data from five patients in the GSE118389 data set were also studied. Using Random forest and COX regression, we developed a prognostic model. Pathway analysis employed GSVA and GO, while immune profiles were assessed via ssGSEA and MCPcounter. Mutation patterns utilized maftools, and drug sensitivity scores were derived from the GDSC database with oncoPredict. RESULTS: Analysis of the GSE118389 data set identified three distinct cell types: immune, epithelial, and stromal. P53 and VEGF were notably enriched. Five key genes (TMEM251, ADAMTSL2, CDC123, PSMD1, TLE1) were pinpointed for their prognostic significance. We introduced a disulfidptosis-associated score as a novel risk factor for breast cancer prognosis. Survival outcomes varied significantly between training and validation sets. Comprehensive immune profiling revealed no difference in activated CD8-positive T cells between risk groups, but a positive correlation of NK cells, neutrophils, cytotoxic lymphocytes, and monocytic cells with the riskscore was noted. Importantly, a negative association between the drug Nelarabine and riskscore was identified. CONCLUSION: This research underscores the significance of a disulfidptosis-associated gene signature in breast cancer prognosis.


Subject(s)
Breast Neoplasms , Humans , Female , Killer Cells, Natural , Leukocytes , ADAMTS Proteins
6.
Quant Imaging Med Surg ; 13(12): 8669-8680, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106262

ABSTRACT

Background: Exact preoperative localization is desirable to perform minimally invasive parathyroidectomy for hyperparathyroidism (HPT). This study aimed to evaluate the diagnostic values of 99mTc-methoxyisobutylisonitrile (99mTc-MIBI) single photon emission computed tomography/computed tomography (SPECT/CT) of parathyroid glands by analyzing the relationship between lesion weight and false-negative (FN) results, as well as to explain the possible reason. Methods: The data from 314 patients with suspected HPT who underwent 99mTc-MIBI SPECT/CT parathyroid imaging between 2011 and 2022 were retrospectively evaluated. The sensitivity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of parathyroid 99mTc-MIBI SPECT/CT were calculated, and the false-positive (FP) and FN findings were analyzed. Results: Accurate localization by 99mTc-MIBI SPECT/CT was significantly associated with the parathyroid hormone (PTH) level. The 99mTc-MIBI SPECT/CT for diagnosis/lesion location reached a sensitivity of 84.6%/56.8%, a PPV of 97.3%/98.4%, an NPV of only 23.7%/4.18%, and an accuracy of 83.4%/57.1%, respectively. The largest diameter, shortest diameter, and lesion volume were lower in the FN group than in the TP group. A total of 7 FP cases were found, including 2 cases of thyroid nodules, 4 cases of thyroid tissue, and 1 case of hibernoma. A total of 45 FN patients, including 321 FN lesions, were confirmed, of which parathyroid hyperplasia accounted for 97.8%. Lesion weights greater than 20 µg were able to be detected, but lightweight lesions less than 100 mg were the principal source of FN results, accounting for approximately 39.3%. With lesion weights 0-100, 101-300, 301-1,000, and >1,000 mg, the FN rate was 70.8% (126/178), 51.8% (103/199), 34.6% (81/234), and 8.33% (11/132), respectively. Conclusions: 99mTc-MIBI SPECT/CT parathyroid imaging provides good sensitivity and high specificity in HPT location. Correct localization by 99mTc-MIBI SPECT/CT correlates positively with lesion weight and PTH levels. The smaller the lesion, the higher the FN rate in 99mTc-MIBI SPECT/CT parathyroid imaging, and lesions weighing less than 100 mg are the main source of FN results in 99mTc-MIBI SPECT/CT parathyroid imaging.

7.
J Pharm Biomed Anal ; 236: 115718, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37717428

ABSTRACT

Sodium (S)- 2-(dithiocarboxylato((2 S,3 R,4 R,5 R)- 2,3,4,5,6-pentahydroxyhexyl)amino)- 4(methylthio)butanoate (GMDTC) is a compound that removes cadmium from kidney cells. This study aims to investigate the metabolic stability and metabolite identification of GMDTC in various liver microsomes, including those from human, monkey, dog, rat and mouse. The results show that the T1/2 values of GMDTC in human, monkey, dog, rat and mouse liver microsomes were 16.54, 18.14, 16.58, 15.16 and 16.00 min, respectively. While the hepatic extraction ratios (ERh) of GMDTC measured after 60 min incubation in these liver microsomes were 0.82, 0.70, 0.80, 0.75 and 0.79, respectively, indicating that GMDTC exhibits rapid hepatic metabolism and high hepatic clearance with no significant interspecies differences. Subsequent metabolite identification by high-resolution mass spectrometry revealed the presence of three metabolites, designated M1∼M3. The major metabolite products of GMDTC were found to be M1 and M2. The relative abundances of the hydrolysis products (M1 and M2) in human, monkey, dog, rat and mouse liver microsomes were found to be 97.18%, 97.99%, 95.94%, 96.31% and 93.43%, respectively, indicating that hydrolysis is the primary metabolic pathway of GMDTC in liver microsomes in vitro, and with no significant interspecies differences.

8.
Oncol Rep ; 50(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37615195

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the tumour images shown in Fig. 7A and certain of the cell proliferation assay images shown in Fig. 3B were strikingly similar to data that had already appeared in another article written by different authors at different research institutes [Xiao W Wang, J, Li H, Xia D, Yu G, Yao W, Yang Y, Xiao H, Lang B, Ma X et al: Fibulin­1 is epigenetically down­regulated and related with bladder cancer recurrence. BMC Cancer 14: 677, 2014]. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncol Rep 38: 2435­2443, 2017; DOI: 10.3892/or.2017.5884].

9.
Hum Exp Toxicol ; 42: 9603271231183056, 2023.
Article in English | MEDLINE | ID: mdl-37295442

ABSTRACT

Cadmium (Cd) is a toxic heavy metal, exposure to which leads to adverse health effects including chronic kidney damage. Tremendous efforts have been explored in identifying safe chelating agents for removing accumulated Cd from kidney, but with limited success owing to their associated side effects and the ineffectiveness in eliminating Cd. A newly developed chelating agent, sodium (S)-2-(dithiocarboxylato((2S,3 R,4R,5 R)-2,3,4,5,6-pentahydroxyhexyl) amino)-4(methylthio)butanoate (GMDTC), has been shown to effectively mobilize Cd from kidney. However, the mechanism(s) of removal are unclear, while it has been hypothesized that renal glucose transporters potentially play key roles mainly because GMDTC contains an open chain glucose moiety. To test this hypothesis, we utilized the CRISPR/Cas9 technology and human kidney tubule HK-2 cells, and constructed sodium-dependent glucose transporter 2 (SGLT2) or glucose transporter 2 (GLUT2) gene knockout cell lines. Our data showed that GMDTC's ability in removing Cd from HK-2 cells was significantly reduced both in GLUT2-/- or SGLT2-/- cells, with a removal ratio reduced from 28.28% in the parental HK-2 cells to 7.37% in GLUT2-/- cells and 14.6% in SGLT2-/- cells. Similarly, knocking out the GLUT2 or SGLT2 led to a compromised protective effect of GMDTC in reducing cytotoxicity of HK-2 cells. This observation was further observed in animal studies, in which the inhibition of GLUT2 transporter by phloretin treatment resulted in reduced efficiency of GMDTC in removing Cd from the kidney. Altogether, our results show that GMDTC is safe and highly efficient in removing Cd from the cells, and this effect is mediated by renal glucose transporters.


Subject(s)
Cadmium , Glucose Transport Proteins, Facilitative , Animals , Humans , Cadmium/toxicity , Glucose Transport Proteins, Facilitative/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Kidney/metabolism , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Chelating Agents/metabolism , Glucose/metabolism , Sodium/metabolism
10.
Math Biosci Eng ; 20(6): 10223-10243, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37322930

ABSTRACT

As an agricultural innovation, low-temperature plasma technology is an environmentally friendly green technology that increases crop quality and productivity. However, there is a lack of research on the identification of plasma-treated rice growth. Although traditional convolutional neural networks (CNN) can automatically share convolution kernels and extract features, the outputs are only suitable for entry-level categorization. Indeed, shortcuts from the bottom layers to fully connected layers can be established feasibly in order to utilize spatial and local information from the bottom layers, which contain small distinctions necessary for fine-grain identification. In this work, 5000 original images which contain the basic growth information of rice (including plasma treated rice and the control rice) at the tillering stage were collected. An efficient multiscale shortcut CNN (MSCNN) model utilizing key information and cross-layer features was proposed. The results show that MSCNN outperforms the mainstream models in terms of accuracy, recall, precision and F1 score with 92.64%, 90.87%, 92.88% and 92.69%, respectively. Finally, the ablation experiment, comparing the average precision of MSCNN with and without shortcuts, revealed that the MSCNN with three shortcuts achieved the best performance with the highest precision.


Subject(s)
Oryza , Neural Networks, Computer , Algorithms , Agriculture
11.
Molecules ; 28(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770860

ABSTRACT

Sodium (S)-2-(dithiocarboxylato((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)amino)-4(methylthio)butanoate (GMDTC) is the first compound to use cadmium repellent as an indication. In this paper, we established and validated a bioanalytical method for the determination of GMDTC in rat plasma, and used it to determine the drug concentrations in the plasma of rats after intravenous dosing in different genders and dosages. After pretreating the plasma samples with an acetonitrile-water-ammonia solution (70:30:1.25, v/v/v), liquid chromatographic separations were efficiently achieved with a XBridge C18 column using a 5 min gradient system of aqueous ammonium bicarbonate and 95% acetonitrile-water solution (95:5, v/v) as the eluent. The GMDTC and metolazone (internal standard, IS) detection were carried out using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS), monitored at m/z 390.06-324.1 (for the GMDTC, tR: 2.03 min) and m/z 366.0-259.2 (for IS, tR: 3.88 min). The GMDTC was stable under various testing conditions, and this analytical method conforms to the verification standard of biological analysis methods. The half-life (t1/2) was determined to be 0.54-0.65 h for the intravenous, mean distribution volume and clearances were 1.08-2.08 L/kg and 1-3 L/h/kg, respectively. The AUC0-t and AUC0-∞ found after increasing the dosage exhibited a linear relationship with the administered dose. There were no statistically significant differences in the values obtained for the different genders at dosages of 50, 100 and 250 mg/kg, respectively (p > 0.05). This is the first report of a bioanalytical method to quantify GMDTC in rat plasma using LC-MS/MS, which provides useful information for the study of its pharmacological effects and clinical applications.


Subject(s)
Cadmium , Tandem Mass Spectrometry , Rats , Female , Male , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Indicators and Reagents , Reproducibility of Results
12.
Environ Res ; 219: 115057, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36529335

ABSTRACT

BACKGROUND: Previous studies have indicated that chlorinated polyfluorinated ether sulfonic acids (Cl-PFESAs), when used as an alternative to per- and polyfluoroalkyl substances (PFASs), result in kidney toxicity. However, their co-exposure with heavy metals, has not yet been described. OBJECTIVES: To explore the joint effects of Cl-PFESAs and heavy metal exposure on renal health in Chinese adults, and identify specific pollutants driving the associations. METHODS: Our sample consists of 1312 adults from a cross-sectional survey of general communities in Guangzhou, China. We measured Cl-PFESAs, legacy PFASs (perfluorooctanoic acid [PFOA] and perfluorooctane sulfonated [PFOS]), and heavy metals (arsenic, cadmium, and lead). The relationship between single pollutant and glomerular filtration rate (eGFR) and the odds ratio (OR) of chronic kidney disease (CKD) was studied using Generalized additive models (GAMs). Bayesian Kernel Machine Regression (BKMR) models were applied to assess joint effects of Cl-PFESAs and heavy metals. Additionally, we conducted a sex-specific analysis to determine the modification effect of this variable. RESULTS: In single pollutant models, CI-PFESAs, PFOA, PFOS and arsenic were negatively associated with eGFR. Additionally, PFOA and heavy metals were positively correlated with the OR of CKD. For example, the estimated change with 95% confidence intervals (CI) of eGFR at from the highest quantile of 6:2 Cl-PFESA versus the lowest quantile was -5.65 ng/mL (95% CI: -8.21, -3.10). Sex played a role in modifying the association between 8:2 Cl-PFESA, PFOS and eGFR. In BKMR models, pollutant mixtures had a negative joint association with eGFR and a positive joint effect on CKD, especially in women. Arsenic appeared to be the primary contributing pollutant. CONCLUSION: We provide epidemiological evidence that Cl-PFESAs independently and jointly with heavy metals impaired kidney health. More population-based human and animal studies are needed to confirm our results.


Subject(s)
Alkanesulfonic Acids , Arsenic , Environmental Pollutants , Fluorocarbons , Renal Insufficiency, Chronic , Adult , Animals , Female , Humans , Alkanesulfonic Acids/analysis , Arsenic/toxicity , Arsenic/analysis , Cross-Sectional Studies , Bayes Theorem , Sulfonic Acids/analysis , Ethers , Ether , China/epidemiology , Alkanesulfonates/analysis , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Fluorocarbons/toxicity , Fluorocarbons/analysis , Cadmium/analysis , Kidney
13.
Environ Mol Mutagen ; 63(8-9): 423-428, 2022 12.
Article in English | MEDLINE | ID: mdl-36346153

ABSTRACT

Occupational exposure to trichloroethylene (TCE) has been associated with alterations in B-cell activation factors and an increased risk of non-Hodgkin's lymphoma (NHL). Here, we aimed to examine the biological processes influenced by TCE exposure to understand the underlying molecular mechanisms. This cross-sectional molecular epidemiology study included data of 1317 targeted proteins in the serum from 42 TCE exposed and 34 unexposed factory workers in Guangdong, China. We used multivariable linear regressions to identify proteins associated with TCE exposure and examined their exposure-response relationship across categories of TCE exposure (unexposed, low exposed: <10 ppm, high exposed: ≥10 ppm). We further examined pathway enrichment of TCE-related proteins to understand their biological response. Occupational exposure to TCE was associated with lower levels of tumor necrosis factor receptor superfamily member 17 (TNFRSF17; ß = -.08; p-value = .0003) and kynureninase (KYNU; ß = -.10, p-value = .002). These proteins also showed a significant exposure-response relation across the unexposed, low exposed, and high exposed workers (all p-trends < .001, false discovery rate [FDR] < 0.20). Pathway analysis of TCE-related proteins showed significant enrichment (FDR < 0.05) for several inflammatory and immune pathways. TCE exposure was associated with TNFRSF17, a key B-cell maturation antigen that mediates B-cell survival and KYNU, an enzyme that plays a role in T-cell mediated immune response. Given that altered immunity is an established risk factor for NHL, our findings support the biological plausibility of linking TCE exposure with NHL.


Subject(s)
Lymphoma, Non-Hodgkin , Occupational Exposure , Trichloroethylene , Humans , Trichloroethylene/toxicity , Trichloroethylene/analysis , Cross-Sectional Studies , Proteomics , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Blood Proteins , Lymphoma, Non-Hodgkin/chemically induced , Lymphoma, Non-Hodgkin/epidemiology
14.
Sci Total Environ ; 839: 156299, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35643130

ABSTRACT

BACKGROUND: Previous studies have separately linked either perfluoroalkyl acid (PFAA) or heavy metal exposure with kidney dysfunction. However, the relationships of co-exposure to PFAAs and heavy metals with kidney function are still unclear. OBJECTIVES: To explore the associations between exposure to PFAAs and heavy metals mixtures and kidney function in adults. METHODS: We conducted a cross-sectional community-based population study in Guangzhou, China, enrolling 1312 adults from November 2018 to August 2019. We quantified 13 PFAAs in serum and 14 heavy metals in plasma. We chose estimated glomerular filtration rate (eGFR) and chronic kidney disease (CKD) as outcomes of interest. Distributed lag non-linear models (DLNMs) were used to check nonlinearity of individual pollutant with kidney function. Joint associations of pollutant mixtures on kidney function were assessed by Bayesian Kernel Machine Regression (BKMR) models. We further explored modification effects of gender. RESULTS: Most individual PFAA and heavy metal were associated with declined kidney function in single-pollutant models. We also observed significant dose-response relationships of pollutant mixtures with reduced eGFR levels and increased odds of CKD in BKMR models. Perfluoroheptanesulfonic acid (PFHpS), arsenic (As) and strontium (Sr) were the predominant contributors among pollutant mixtures. A change in log PFHpS, As and Sr concentrations from the 25th to the 75th percentile were associated with a decrease in eGFR of -5.42 (95% confidence interval (CI): -6.86, -3.98), -2.14 (95% CI: -3.70, -0.58) and -1.87 (95% CI: -3.03, -0.72) mL/min/1.73 m2, respectively, when other pollutants were at their median values. In addition, the observed associations were more obvious in females. CONCLUSIONS: We provided new evidence that co-exposure to PFAAs and heavy metals mixtures was associated with reduced kidney function in adults and PFHpS, As and Sr appeared to be the major contributors. Further studies are warranted to confirm our findings and elucidate the underlying mechanisms.


Subject(s)
Arsenic , Environmental Pollutants , Fluorocarbons , Metals, Heavy , Renal Insufficiency, Chronic , Adult , Bayes Theorem , China/epidemiology , Cross-Sectional Studies , Female , Humans , Kidney , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/epidemiology , Strontium
15.
Occup Environ Med ; 79(10): 717-720, 2022 10.
Article in English | MEDLINE | ID: mdl-35504721

ABSTRACT

OBJECTIVES: There has been concern over the possible risk of autoimmune diseases from exposure to trichloroethylene (TCE), an industrial solvent and common pollutant near hazardous waste sites. Studies of TCE-exposed lupus-prone mouse strains have reported increases in serum antinuclear antibodies (ANAs), a marker of autoimmunity, and autoimmune pathologic changes, while epidemiologic studies have provided limited support for an association between TCE exposure and scleroderma. To investigate exposure-related biologic evidence of autoimmunity in humans, we measured ANA levels in sera from a cross-sectional study of TCE-exposed (n=80) and TCE-unexposed (n=96) workers in Guangdong, China. METHODS: Full-shift personal air exposure measurements for TCE were taken prior to blood collection. Serum ANAs were detected by immunofluorescence on HEp-2 cells. We calculated ORs and 95% CI relating levels of TCE exposure (categorised using tertiles as cut-points) and ANA positivity (1+ intensity at 1:320 dilution) using multivariable logistic regression. RESULTS: Samples from 16 of 176 participants were ANA-positive. We found higher levels of TCE exposure (concentrations>17.27 ppm) to be associated with an elevated odds of ANA positivity (OR 4.7, 95% CI 1.3 to 16.8) compared with unexposed controls. This association remained after excluding two subjects with diagnosed autoimmune disease (OR 4.5, 95% CI 1.2 to 16.2). We did not observe an association with ANAs at lower exposure levels. CONCLUSIONS: Our findings, to our knowledge the first direct human evidence of an association between TCE exposure and systemic autoimmunity, provide biologic plausibility to epidemiologic evidence relating TCE and autoimmune disease.


Subject(s)
Autoimmune Diseases , Biological Products , Occupational Exposure , Trichloroethylene , Animals , Antibodies, Antinuclear , Autoimmune Diseases/chemically induced , Autoimmune Diseases/epidemiology , Cross-Sectional Studies , Humans , Mice , Occupational Exposure/adverse effects , Trichloroethylene/adverse effects
16.
Bioengineered ; 13(2): 3896-3910, 2022 02.
Article in English | MEDLINE | ID: mdl-35109743

ABSTRACT

SOCS3 is low-expressed in breast cancer and may be a potential target. Ultrasound targeted microbubble destruction (UTMD) improved the efficiency of gene transfection. We explored the effects of UTMD-mediated transfection of SOCS3 on the biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells (BCSCs). The expression of SOCS3 in breast cancer (BC) and its association with prognosis were evaluated by GEPIA and The Cancer Genome Atlas (TCGA) websites. BCSCs were sorted by flow cytometry and immunomagnetic bead method, followed by sphere formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and xenograft assays to test their effects in vitro and in vivo. The levels of SOCS3, EMT- and STAT3 pathway-related genes were determined by RT-qPCR and Western blot, respectively. The effects of liposome and UTMD on BCSCs and mice were compared by the gain-of-function experiments. Low expression of SOCS3 was associated with poor prognosis of BC patients, and found in BC and BCSCs. BCSCs were successfully sorted, with high viability and tumorigenicity. UTMD increased the transfection rate of SOCS3. Moreover, UTMD- and liposome-mediated SOCS3 reduced cell viability, proliferation, migration and invasion, blocked cell cycle, inhibited sphere formation in BCSCs, and retarded tumor growth in mice. Mechanistically, overexpressed SOCS3 inhibited the expressions of EMT-related genes and the activation of STAT3 pathway in BCSCs and mice. The regulatory effects of UTMD-mediated SOCS3 on the above-mentioned biological characteristics were better than liposome-mediated SOCS3. UTMD-mediated SOCS3 has a better therapeutic effect in BC, providing new experimental evidence for the treatment of BC.


Subject(s)
Breast Neoplasms , Microbubbles , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Humans , Liposomes , Mice , Neoplastic Stem Cells/pathology , Suppressor of Cytokine Signaling 3 Protein/genetics
17.
Environ Int ; 158: 106871, 2022 01.
Article in English | MEDLINE | ID: mdl-34560324

ABSTRACT

Epigenetic aging biomarkers are associated with increased morbidity and mortality. We evaluated if occupational exposure to three established chemical carcinogens is associated with acceleration of epigenetic aging. We studied workers in China occupationally exposed to benzene, trichloroethylene (TCE) or formaldehyde by measuring personal air exposures prior to blood collection. Unexposed controls matched by age and sex were selected from nearby factories. We measured leukocyte DNA methylation (DNAm) in peripheral white blood cells using the Infinium HumanMethylation450 BeadChip to calculate five epigenetic aging clocks and DNAmTL, a biomarker associated with leukocyte telomere length and cell replication. We tested associations between exposure intensity and epigenetic age acceleration (EAA), defined as the residuals of regressing the DNAm aging biomarker on chronological age, matching factors and potential confounders. Median differences in EAA between exposure groups were tested using a permutation test with exact p-values. Epigenetic clocks were strongly correlated with age (Spearman r > 0.8) in all three occupational studies. There was a positive exposure-response relationship between benzene and the Skin-Blood Clock EAA biomarker: median EAA was -0.91 years in controls (n = 44), 0.78 years in workers exposed to <10 ppm (n = 41; mean benzene = 1.35 ppm; p = 0.034 vs. controls), and 2.10 years in workers exposed to ≥10 ppm (n = 9; mean benzene = 27.3 ppm; p = 0.019 vs. controls; ptrend = 0.0021). In the TCE study, control workers had a median Skin-Blood Clock EAA of -0.54 years (n = 71) compared to 1.63 years among workers exposed to <10 ppm of TCE (n = 27; mean TCE = 4.22 ppm; p = 0.035). We observed no evidence of EAA associations with formaldehyde exposure (39 controls, 31 exposed). Occupational benzene and TCE exposure were associated with increased epigenetic age acceleration measured by the Skin-Blood Clock. For TCE, there was some evidence of epigenetic age acceleration for lower exposures compared to controls. Our results suggest that some chemical carcinogens may accelerate epigenetic aging.


Subject(s)
Occupational Exposure , Trichloroethylene , Aging , Benzene/toxicity , Biomarkers , Epigenesis, Genetic , Formaldehyde/toxicity , Humans , Occupational Exposure/analysis , Trichloroethylene/toxicity
18.
Front Mol Biosci ; 8: 739978, 2021.
Article in English | MEDLINE | ID: mdl-34738015

ABSTRACT

Cancer remains one of the top culprits causing disease-related deaths. A lack of effective multi-cancer therapeutic targets has limited the prolongation of cancer patients' survival. Therefore, it is important to explore novel oncogenic genes or versatile targets and perform a comprehensive analysis to assess their roles in the process of tumorigenesis. OSBPL3 protein is an intracellular lipid receptor of the oxysterol-binding protein superfamily, which participates in some pathological and physiological processes in tumor progression. However, its clinical roles and potential mechanisms in cancers remain unknown. Thus, we aimed to systematic explore the potential oncogenic roles of OSBPL3 across thirty-three tumors using multiple web-based and publicly available tools, including the Cancer Genome Atlas, Gene Expression Omnibus, Genotype-Tissue Expression, cBioPortal, and Human Protein Atlas database. OSBPL3 is highly expressed in major subtypes of cancers, distinctly associated with the prognosis of tumor patients. We observed X676_splice/V676G alteration in the oxysterol domain and frequent mutations of OSBPL3 involve cell survival in skin cutaneous melanoma. We also first presented that the expression of OSBPL3 was associated with tumor mutational burden (TMB) in nine cancer types. Additionally, OSBPL3 shows an enhanced phosphorylation level at S426, S251, and S273 loci within the pleckstrin homology domain in multiple tumors, such as breast cancer or lung adenocarcinoma. And OSBPL3 expression was associated with active immune cells (CD8+ T cells) and cancer-associated fibroblasts in breast cancer, colon adenocarcinoma, and kidney renal clear cell carcinoma and immune checkpoint genes in more than 30 tumors, but weakly associated with immune suppressive cells (myeloid-derived suppressor cells, T regulatory cells). Moreover, protein processing and mRNA metabolic signaling pathways were involved in the functional mechanisms of OSBPL3. Our study first demonstrated that a novel agent OSBPL3 plays an important role in tumorigenesis from the perspective of publicly available databases and clinical tumor samples in various cancers, which comprehensively provide insights into its biological functions and may be helpful for further investigation.

19.
PeerJ ; 9: e11377, 2021.
Article in English | MEDLINE | ID: mdl-33987034

ABSTRACT

BACKGROUND: Breast cancer (BC), one of the most widespread cancers worldwide, caused the deaths of more than 600,000 women in 2018, accounting for about 15% of all cancer-associated deaths in women that year. In this study, we aimed to discover potential prognostic biomarkers and explore their molecular mechanisms in different BC subtypes using DNA methylation and RNA-seq. METHODS: We downloaded the DNA methylation datasets and the RNA expression profiles of primary tissues of the four BC molecular subtypes (luminal A, luminal B, basal-like, and HER2-enriched), as well as the survival information from The Cancer Genome Atlas (TCGA). The highly expressed and hypermethylated genes across all the four subtypes were screened. We examined the methylation sites and the downstream co-expressed genes of the selected genes and validated their prognostic value using a different dataset (GSE20685). For selected transcription factors, the downstream genes were predicted based on the Gene Transcription Regulation Database (GTRD). The tumor microenvironment was also evaluated based on the TCGA dataset. RESULTS: We found that Wilms tumor gene 1 (WT1), a transcription factor, was highly expressed and hypermethylated in all the four BC subtypes. All the WT1 methylation sites exhibited hypermethylation. The methylation levels of the TSS200 and 1stExon regions were negatively correlated with WT1 expression in two BC subtypes, while that of the gene body region was positively associated with WT1 expression in three BC subtypes. Patients with low WT1 expression had better overall survival (OS). Five genes including COL11A1, GFAP, FGF5, CD300LG, and IGFL2 were predicted as the downstream genes of WT1. Those five genes were dysregulated in the four BC subtypes. Patients with a favorable 6-gene signature (low expression of WT1 and its five predicted downstream genes) exhibited better OS than that with an unfavorable 6-gene signature. We also found a correlation between WT1 and tamoxifen using STITCH. Higher infiltration rates of CD8 T cells, plasma cells, and monocytes were found in the lower quartile WT1 group and the favorable 6-gene signature group. In conclusion, we demonstrated that WT1 is hypermethylated and up-regulated in the four BC molecular subtypes and a 6-gene signature may predict BC prognosis.

20.
J Cell Mol Med ; 24(15): 8826-8835, 2020 08.
Article in English | MEDLINE | ID: mdl-32618411

ABSTRACT

Breast cancer, as the most common malignancy, is the second leading cause of cancer-related death in women. One of the kelch family member ENC1 is involved in various pathophysiologic processes. But the role of ENC1 in breast cancer has not been investigated. The present study value the feature, clinical significance and the molecular mechanisms of ENC1 in breast cancer. The expression and prognosis value of ENC1 expression among breast cancer and normal breast tissue were investigated in The Cancer Genome Atlas database and human samples. ENC1 was knockdown to explore its function in various breast cancer cell lines. Western blot was performed to explore the potential molecular mechanisms. We observed that ENC1 was overexpressed in breast cancer tissues. ENC1 overexpression was associated with high metastasis and predicted a poor prognosis in patients with breast cancer. ENC1 Knockdown inhibits the growth, clone formation, migration and invasion of breast cancer cells. Mechanism analysis revealed ENC1 was strong associated with the metastasis by modulating ß-catenin pathway. Our study emphasizes that ENC1 is a potential prognostic and metastasis-related marker of breast cancer, and may function as a possible therapeutic target against breast cancer.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Microfilament Proteins/metabolism , Neuropeptides/metabolism , Nuclear Proteins/metabolism , Wnt Signaling Pathway , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms/etiology , Cell Line, Tumor , Computational Biology , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Microfilament Proteins/genetics , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neuropeptides/genetics , Nuclear Proteins/genetics , Proportional Hazards Models , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL
...