Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; : e202400753, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136386

ABSTRACT

The design and synthesis of chiral covalent organic frameworks (COFs) with controlled defect sites are highly desirable but still remain largely unexplored. Herein, we report the synthesis of a defective chiral HD-TAPB-DMTP COF by modifying the chiral monomer helicid (HD) into the framework of an achiral imine-linked TAPB-DMTP COF using a chiral monomer exchange strategy. Upon the introduction of the chiral HD unit, the obtained defective chiral HD-TAPB-DMTP COF not only displays excellent crystallinity, large specific surface area (up to 2338 m2/g) and rich accessible chiral functional sites but also exhibits fluorescence emission, rendering it a good candidate for discrimination of amino acids. Notably, the resultant defective chiral HD-TAPB-DMTP COF can be used as a fluorescent sensor for enantioselective recognition of both tyrosine and phenylalanine enantiomers in water, showing enhanced fluorescent responses for the L conformations over those of the D conformations with enantioselectivity factors being 1.84 and 2.02, respectively. Moreover, molecular docking simulations uncover that stronger binding affinities between chiral HD-TAPB-DMTP COF and L-tyrosine/L-phenylalanine in comparison to those with D-tyrosine/D-phenylalanine play important roles in enantioselective determination. This work provides new insights into the design and construction of highly porous defective chiral COFs for enantioselective fluorescence recognition of amino acids.

2.
Angew Chem Int Ed Engl ; : e202413171, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39193661

ABSTRACT

Exploring self-standing chiral covalent organic framework (CCOF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains challenging. Herein, we demonstrate the first example of self-standing CCOF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality CCOF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of 4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films.

3.
ACS Appl Mater Interfaces ; 16(8): 10661-10670, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377517

ABSTRACT

Chiral covalent organic frameworks (COFs) hold considerable promise in the realm of heterogeneous asymmetric catalysis. However, fine-tuning the pore environment to enhance both the activity and stereoselectivity of chiral COFs in such applications remains a formidable challenge. In this study, we have successfully designed and synthesized a series of clover-shaped, hydrazone-linked chiral COFs, each with a varying number of accessible chiral pyrrolidine catalytic sites. Remarkably, the catalytic efficiencies of these COFs in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde correlate well with the number of accessible pyrrolidine sites within the frameworks. The COF featuring nearly one pyrrolidine moiety at each nodal point demonstrated excellent reaction yields and enantiomeric excess (ee) values, reaching up to 97 and 83%, respectively. The findings not only underscore the profound impact of a deliberately controlled chiral pore environment on the catalytic efficiencies of COFs but also offer a new perspective for the design and synthesis of advanced chiral COFs for efficient asymmetric catalysis.

4.
Chemistry ; 30(14): e202303781, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38196025

ABSTRACT

Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.

5.
ACS Appl Mater Interfaces ; 15(20): 24836-24845, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191124

ABSTRACT

The development of chiral covalent organic frameworks (COFs) by postsynthetic modification is challenging due to the common occurrences of racemization and crystallinity decrement under harsh modification conditions. Herein, we employ an effective site-selective synthetic strategy for the fabrication of an amine-functionalized hydrazone-linked COF, NH2-Th-Tz COF, by the Schiff-base condensation between aminoterephthalohydrazide (NH2-Th) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). The resulting NH2-Th-Tz COF with free amine groups on the pore walls provides an appealing platform to install desired chiral moieties through postsynthetic modification. Three chiral moieties including tartaric acid, camphor-10-sulfonyl chloride, and diacetyl-tartaric anhydride were postsynthetically integrated into NH2-Th-Tz COF by reacting amine groups with acid, acyl chloride, and anhydride, giving rise to a series of chiral COFs with distinctive chiral pore surfaces. Moreover, the crystallinity, porosity, and chirality of chiral COFs were retained after modification. Remarkably, the chiral COFs exhibited an exceptional enantioselective adsorption capability toward tyrosine with a maximum enantiomeric excess (ee) value of up to 25.20%. Molecular docking simulations along with experimental results underscored the pivotal role of hydrogen bonds between chiral COFs and tyrosine in enantioselective adsorption. This work highlights the potential of site-selective synthesis as an effective tool for the preparation of highly crystalline and robust amine-decorated COFs, which offer an auspicious platform for the facile synthesis of tailor-made chiral COFs for enantioselective adsorption and beyond.

6.
Angew Chem Int Ed Engl ; 62(4): e202216310, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36445778

ABSTRACT

Despite significant progress on the design and synthesis of covalent organic frameworks (COFs), precise control over microstructures of such materials remains challenging. Herein, two chiral COFs with well-defined one-handed double-helical nanofibrous morphologies were constructed via an unprecedented template-free method, capitalizing on the diastereoselective formation of aminal linkages. Detailed time-dependent experiments reveal the spontaneous transformation of initial rod-like aggregates into the double-helical microstructures. We have further demonstrated that the helical chirality and circular dichroism signal can be facilely inversed by simply adjusting the amount of acetic acid during synthesis. Moreover, by transferring chirality to achiral fluorescent molecular adsorbents, the helical COF nanostructures can effectively induce circularly polarized luminescence with the highest luminescent asymmetric factor (glum ) up to ≈0.01.

7.
J Chromatogr A ; 1675: 463155, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35635867

ABSTRACT

Porous spherical silica-based chiral stationary phases (CSPs) have been commercially used in the field of chiral separation, however, the scope of their application is, to some extent, limited by the instability of silica towards mobile phase containing strong base or acid. As such, developing new matrix-based CSPs is one of the effective strategies to overcome this bottleneck in studies of chiral separation materials. In this work, we have demonstrated that stable spherical covalent organic frameworks (SCOFs) can be utilized as matrixes for the fabrication of new CSPs for the first time. Specifically, a porous imine-linked SCOF with good crystallinity, large surface area, and high chemical stability is synthesized at room temperature. Then, cellulose-tris (3,5-dimethylphenylcarbamate) (CDMPC), a typical cellulose derivative, is selected as a potential chiral selector and coated onto the robust SCOFs, giving rise to the fabrication of new CDMPC@SCOF CSPs. The as-synthesized stable SCOF-based CSPs are exploited for high-performance liquid chromatographic (HPLC) enantioseparation, showing high resolution abilities for the separation of racemic compounds such as metalaxyl, 1-(1-naphthalenyl)ethanol, epoxiconazol, trans-stilbene oxide, and so on. Moreover, the prepared SCOF-based CSPs exhibit more superior acid and base stability than those of the silica-based CSPs. Our work not only uncovers the great potential of SCOFs as matrixes for constructing novel CSPs, but also expands the application of COFs in the field of enantiomeric separation under harsh base and acid conditions.


Subject(s)
Metal-Organic Frameworks , Cellulose/chemistry , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Stereoisomerism
8.
ACS Macro Lett ; 10(12): 1590-1596, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35549129

ABSTRACT

Amine-functionalized covalent organic frameworks (COFs) hold great potential in diversified applications. However, the synthesis is dominated by postsynthetic modification, while the de novo synthesis allowing for direct installation of amine groups remains a formidable challenge. Herein, we develop a site-selective synthetic strategy for the facile preparation of amine-functionalized hydrazone-linked COF for the first time. A new monomer 2-aminoterephthalohydrazide (NH2-Th) bearing both amine and hydrazide functionalities is designed to react with benzene-1,3,5-tricarbaldehyde (Bta). Remarkably, the different activity of amine and hydrazide groups toward aldehyde underpin the highly site-selective synthesis of an unprecedented NH2-Th-Bta COF with abundant free amine groups anchored in the well-defined pore channels. Interestingly, NH2-Th-Bta COF exhibits dramatically enhanced iodine uptake capacity (3.58 g g-1) in comparison to that of the nonfunctionalized Th-Bta COF counterpart (0.68 g g-1), and many reported porous adsorbents, despite its low specific surface area. Moreover, NH2-Th-Bta COF possesses exceptional cycling capability and retained high iodine uptake, even after six cycles. This work not only provides a simple and straightforward route for the de novo synthesis of amine-functionalized COFs but also uncovers the great potential of amine-functionalized COFs as adsorbents in the efficient removal of radioiodine and beyond.

9.
Org Biomol Chem ; 12(31): 5866-75, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24977957

ABSTRACT

With the aid of an azo directing group, Pd-catalyzed ortho-sp(2) C-H bond activation/functionalization of azoarenes with aryl acyl peroxides has been explored. This transformation provides easy access to regioselectively introducing acyloxyl and aryl groups into azoarenes by simply changing the reaction temperature and solvent.

SELECTION OF CITATIONS
SEARCH DETAIL
...