Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(21): 13675-13682, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752561

ABSTRACT

It remains a grand challenge to amplify the chiroptical activity of chiral metal nanoclusters (NCs) although it is desirable for fundamental research and practical application. Herein, we report a strategy of surface/interface solidification (SIS) for enhancing the chiroptical activity of gold NCs. Structural analysis of [Au19(2R,4R/2S,4S-BDPP)6Cl2]3+ (BDPP is 2,4-bis(diphenylphosphino)pentane) clusters reveals that one of the interfacial gold atoms is flexible between two sites and large space is present on the surface, thus hampering chirality transfer from surface chiral ligands to metal core and leading to low chiroptical activity. Following SIS by filling the flexible sites and replacing chlorides with thiolate ligands affords another pair of [Au20(2R,4R/2S,4S-BDPP)6(4-F-C6H4S)2]4+, which shows a more compact and organized structure and thus an almost 40-fold enhancement of chiroptical activity. This work not only provides an efficient approach for amplifying the chiroptical activity of metal nanoclusters but also highlights the significance of achiral components in shaping chiral nanostructures.

2.
Small Methods ; : e2400040, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682590

ABSTRACT

The study of the structures, applications, and structure-property relationships of atomically precise metal nanoclusters relies heavily on their controlled synthesis. Although great progress has been made in the controlled synthesis of Group 11 (Cu, Ag, Au) metal nanoclusters, the preparation of Pd nanoclusters remains a grand challenge. Herein, a new, simple, and versatile synthetic strategy for the controlled synthesis of Pd nanoclusters is reported with tailorable structures and functions. The synthesis strategy involves the controllable transformations of Pd4(CO)4(CH3COO)4 in air, allowing the discovery of a family of Pd nanoclusters with well-defined structure and high yield. For example, by treating the Pd4(CO)4(CH3COO)4 with 2,2-dipyridine ligands, two clusters of Pd4 and Pd10 whose metal framework describes the growth of vertex-sharing tetrahedra have been selectively isolated. Interestingly, chiral Pd4 nanoclusters can be gained by virtue of customized chiral pyridine-imine ligands, thus representing a pioneering example to shed light on the hierarchical chiral nanostructures of Pd. This synthetic methodology also tolerates a wide variety of ligands and affords phosphine-ligated Pd nanoclusters in a simple way. It is believed that the successful exploration of the synthetic strategy would simulate the research enthusiasm on both the synthesis and application of atomically precise Pd nanoclusters.

3.
Phys Chem Chem Phys ; 25(44): 30373-30380, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37909301

ABSTRACT

Structurally precise metal nanoclusters with a facile synthetic process and high catalytic performance have been long pursued. These atomically precise nanocatalysts are regarded as model systems to study structure-performance relationships, surface coordination chemistry, and the reaction mechanism of heterogeneous metal catalysts. Nevertheless, the research on silver-based nanoclusters for driving chemical transformations is sluggish in comparison to gold counterparts. Herein, we report the one-step synthesis of Pt/Ag alloy nanoclusters of [PtAg9(C18H12Br3P)7Cl3](C18H12Br3P), which are highly active in catalysing cycloaddition reactions of CO2 and epoxides. The cluster was obtained in a rather simple way with the reduction of silver and platinum salts in the presence of ligands in one pot. The molecular structure of the titled cluster describes the protection of the Pt-centred Ag9 crown by the shell of phosphine ligands and halides. Its electronic structure, as revealed by density function theoretical calculations, adopts a superatomic geometry with 1S21P6 configuration. Interestingly, the cluster displays high activity in the formation of cyclic carbonates from CO2 under mind conditions.

4.
Inorg Chem ; 62(13): 5088-5094, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36947487

ABSTRACT

Little advance has been made toward developing alternative bottom-up synthetic strategies for N-heterocyclic carbene (NHC)-stabilized gold nanoclusters, although this unique class of nanomaterials has exhibited exciting properties. We report in this work a simple and straightforward approach toward NHC-ligated gold nanoclusters by using imidazolium salts rather than free carbenes or NHC-coordinated gold complexes (NHC-Au-X, X is counterions) as precursors. Illustrated here is a one-pot and one-step preparation of an NHC-stabilized Au13Br4 cluster that features a distinct molecular formula, surface motifs, and assembling modes via chemical reduction of dpaAu, NaOMe, and FNHCBn·HBr by NaBH4 (Hdpa is dipyridylamine; FNHCBn·HBr is 1,3-dibenzyl-5,6-difluoro-1H-benzo[d]imidazole-3-ium bromide). In situ UV-vis and NMR studies have elucidated the base-assisted formation of NHCs from imidazolium salts for the protection of the metal core. This work not only reports a new NHC-ligated superatom that completes the Au13 library, thus facilitating structure-property studies, but also opens the door to explore underlying analogues in a facile and reasonable way.

5.
Nanoscale ; 15(5): 2316-2322, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36636988

ABSTRACT

Elucidating the coordination structures and assembling modes of atomically precise metal nanoclusters (NCs) remains a hot topic as it gives answers to the underlying mechanism of nanomaterials and bulk materials in terms of structure-property relationships. Here we report a novel silver-copper alloy NC featuring rich alkynyl-metal coordination modes and unique SbF6- assembling structures. The NC, with the composition of [Ag18Cu8(dppp)4(tBu-C6H4CC)22](SbF6)4 (dppp = 1,3-bis(diphenylphosphino)-propane), was prepared by a stepwise synthetic approach. Single-crystal X-ray diffraction analysis revealed that such a NC featured a staircase-like Ag18Cu8 kernel, which was protected by hybrid alkynyl and dppp ligands in diverse coordination structures and multiple environments. The structural analysis also revealed the unique function of SbF6- in inducing the assembly of cluster moieties, highlighting the importance of counterions in assembling nanomolecules. The diverse coordination structures of the protective ligands with metal ions and the indispensable roles of counterions in assembling the cluster moieties have also been supported by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) studies, making it a model system to showcase the uniqueness of atomically precise metal NCs in illustrating the coordination chemistry of nanomaterials and bulk materials at the molecular level.

6.
Dalton Trans ; 52(1): 52-57, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36453230

ABSTRACT

A novel alkynyl-stabilized silver-copper alloy nanocluster with the composition of [Ag13-xCu6+x(tBuC6H4CC)14(PPh3)6](SbF6)3 was prepared by the (PPh3)2CuBH4-mediated reduction approach. The nanocluster features a centred disordered-octahedral Ag7Cu6 kernel, which is protected by hybrid alkynyl and triphenylphosphine ligands. Structural comparison of this two-electron nanocluster with other alkynyl-capped Ag/Cu ones suggested that the structure of alkynyl ligands played an important role in dictating the structures of the resulting nanoclusters. The title cluster showed high performance in the catalytic hydrogenation of 4-nitrophenol, indicative of the bright future of cluster-based catalysts.

7.
J Am Chem Soc ; 144(24): 10844-10853, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35671335

ABSTRACT

The complexity of heterogeneous metal catalysts makes it challenging to gain insights into their catalytic mechanisms. Thus, there exists a huge gap between heterogeneous catalysis and organometallic catalysis. With the success in the preparation of highly robust atomically precise metal nanocluster catalysts (i.e., [Au16(NHC-1)5(PA)3Br2]3+ and [Au17(NHC-1)4(PA)4Br4]+, where NHC-1 is a bidentate NHC ligand, and PA is phenylacetylide) with surface organometallic motifs anchored on the metallic core, we demonstrate in this work how the metallic core works synergistically with the surface organometallic motifs to enhance the catalysis. More importantly, the discovery allows the development of highly stable and recyclable heterogeneous metal catalysts to achieve efficient hydroamination of alkynes with an extremely low catalyst dosage (0.002 mol %), helping bridge the gap between heterogeneous and homogeneous metal catalysis. The surface modification of metal nanocatalysts with organometallic motifs provides a new design principle of metal catalysts with enhanced catalysis.

8.
Inorg Chem ; 61(24): 9251-9256, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35723507

ABSTRACT

Polynuclear silver clusters have attracted intensive attention in the academic community owing to their rich physicochemical properties. The development of thione-protected silver clusters has been lagging behind the well-explored thiolate-protected silver-sulfide clusters. Herein, we report two N-heterocyclic thione-protected silver clusters: [Ag4(2-TBI)6(SO4)3]2- (Ag4) and [Br@Ag8(2-TBI)12(SO4)2]3+ (Ag8) (2-TBI = 2-thiobenzimidazol), which cocrystallize to form cluster-based molecular crystals with a CaF2-type structure. The cocrystal shows high thermal stability in air. Notably, the two cluster-based layers are alternately assembled to exhibit a unique k-vector-differential crystallographic arrangement. This work may lay a foundation for synthesis of atomically precise and stable silver clusters using readily available N-heterocyclic thione ligands.

9.
ACS Nanosci Au ; 2(6): 520-526, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-37101850

ABSTRACT

Optimizing the synthesis of atomically precise metal nanoclusters by virtue of molecular tools is highly desirable but quite challenging. Herein we report how 19F NMR spectroscopy can be used to guide the high-yield synthesis of N-heterocyclic carbene (NHC)-stabilized gold nanoclusters. In spite of little difference, 19F NMR signals of fluoro-incorporated NHCs (FNHC) are highly sensitive to the tiny change in their surrounding chemical environments with different N-substituents, metals, or anions, thus providing a convenient strategy to discriminate species in reaction mixtures. By using 19F NMR, we first disclosed that the one-pot reduction of FNHC-Au-X (X is halide) yields multiple compounds, including cluster compounds and also a large amount of highly stable [Au(FNHC)2]+ byproduct. The detailed quantitative 19F NMR analyses over the reductive synthesis of NHC-stabilized Au nanoclusters reveal that the formation of the di-NHC complex is deleterious to the high-yield synthesis of NHC-stabilized Au nanoclusters. With the understanding, the reaction kinetic was then slowed by controlling the reduction rate to achieve the high yield of a [Au24(FNHC)14X2H3]3+ nanocluster with a unique structure. The strategy demonstrated in this work is expected to provide an effective tool to guide the high-yield synthesis of organic ligand-stabilized metal nanoclusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...